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OPTIMIZATION UNDER UNCERTAINTY: ADAPTIVE VARIANCE REDUCTION, ADAPTIVE

METAMODELING, AND INVESTIGATION OF ROBUSTNESS MEASURES

Abstract
by

Juan Camilo Medina

This dissertation offers computational and theoretical advances for optimization
under uncertainty problems that utilize a probabilistic framework for addressing such
uncertainties, and adopt a probabilistic performance as objective function. Emphasis is
placed on applications that involve potentially complex numerical and probability
models. A generalized approach is adopted, treating the system model as a “black-box”
and relying on stochastic simulation for evaluating the probabilistic performance. This
approach can impose, though, an elevated computational cost, and two of the advances
offered in this dissertation aim at decreasing the computational burden associated with
stochastic simulation when integrated with optimization applications.

The first one develops an adaptive implementation of importance sampling (a
popular variance reduction technique) by sharing information across the iterations of

the numerical optimization algorithm. The system model evaluations from the current
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iteration are utilized to formulate importance sampling densities for subsequent
iterations with only a small additional computational effort. The characteristics of these
densities as well as the specific model parameters these densities span are explicitly
optimized. The second advancement focuses on adaptive tuning of a kriging metamodel
to replace the computationally intensive system model. A novel implementation is
considered, establishing a metamodel with respect to both the uncertain model
parameters as well as the design variables, offering significant computational savings.
Additionally, the adaptive selection of certain characteristics of the metamodel, such as
support points or order of basis functions, is considered by utilizing readily available
information from the previous iteration of the optimization algorithm.

The third advancement extends to a different application and considers the
assessment of the appropriateness of different candidate robust designs. A novel
robustness measure is introduced, the probability of dominance, defined as the
likelihood that a given design will outperform its competing designs. This new measure
ultimately provides a rational approach to quantify the preference towards each
candidate design. The existence of a model prediction error is also addressed within the

definition of this measure.
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CHAPTER 1:

INTRODUCTION

1.1 Background and Motivation

In any engineering design application, the performance predictions for the
system under consideration involve some level of uncertainty (Helton 1997; Beck and
Gomes 2012; Der Kiureghian and Ditlevsen 2009) stemming from the incomplete
knowledge about the system itself and its environment (representing future excitations)
—what is generally referenced as epistemic uncertainty — or from the inherent variability
in the system/excitation description (for example existence of disturbances of stochastic
nature) — what is generally referenced as aleatory uncertainty. Explicitly accounting for
these uncertainties is exceptionally important for providing optimal configurations that
exhibit robust performance, and toward this goal, increased attention has been given in
recent years to non-deterministic techniques for the design of engineering systems
(Schuéller and Jensen 2008; Doltsinis 2004). For this purpose, various frameworks have
been established for addressing uncertainties in the analysis/design of such systems;
examples include interval analysis, fuzzy sets, and probability logic (Ayyub and Gupta
1997; Jaynes 2003). The latter, i.e. a probability logic approach, is perhaps the most

popular and is widely acknowledged to provide a rational and consistent framework for
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incorporating our incomplete knowledge about the true system and its environment
into the characterization of the system model properties (Beck and Taflanidis 2013). This
is established by employing probability distributions to describe the relative plausibility
(likelihood) of different uncertain model parameters values (Jaynes 2003). In this
setting, the probabilistic performance is described though some statistical measure (i.e.,
an expectation operator) over these distributions. This dissertation offers theoretical
and computational advances in the design of engineering systems when such a
probabilistic framework is adopted to characterize the uncertainties in their description,
focusing particularly on applications with potentially complex numerical and probability
models for which evaluation of the probabilistic performance can typically be

established only through stochastic simulation techniques.

1.1.1 Traditional Approaches in Optimization under Uncertainty

Within a probabilistic framework, various formulations have been proposed for
the design of engineering systems (Schuéller and Jensen 2008; Doltsinis 2004; Beyer and
Sendhoff 2007; Fang et al.; Park et al. 2006; Valdebenito and Schuéller 2010).
Undoubtedly, two are traditionally recognized as popular approaches: Reliability-Based

Design Optimization (RBDO) and Robust Design Optimization (RDO).

1.1.1.1 Reliability-Based Design Optimization (RBDO)
RBDO utilizes the reliability of the system as either the objective function or
more commonly as a constraint (Valdebenito and Schuéller 2010; Aoues 2008; Royset

2006; Jia and Taflanidis 2013; Tu et al. 1999; Enevoldsen and Sgrensen 1994; Frangopol
2
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1985). The design of systems that must satisfy some target reliability constraint
generally leads to simpler optimization problems, which has been a reason for its
increased popularity. Advances in computational/computer science have motivated
research over the past decade to directly incorporate reliability as a system objective in
the design problem formulation since that approach offers a more rational design
framework for many types of problems (Helton 1997; Beck and Gomes 2012; Der
Kiureghian and Ditlevsen 2009). The system reliability is quantified by the probability
that its performance will not exceed some acceptable threshold, or more generally that
a specific limit state is not reached. The selection of this threshold (or more generally
the characteristics of the limit state function) has a direct impact on the obtained
optimal design (i.e. changing the threshold will dramatically change that design)
(Taflanidis et al. 2010). Analytical approximations such as the First Order Reliability
Method (FORM) (Chiralaksanakul 2005) or Second Order Reliability Method (SORM)
(Der Kiureghian et al. 1987) are commonly employed to estimate the system reliability
within the context of the optimization algorithm employed to solve the RBDO problem.
Both of these methods utilize only information from the most probable failure point
(also known as design point), defined as the model parameter configuration that has the
highest likelihood in producing system failure (i.e., satisfy the chosen limit state
function), to approximate the system reliability. Thus, approximation of the latter is
transformed into an optimization problem for identifying these design point(s).

A relative drawback of RBDO is its lack of theoretical/computational generality

since it requires the definition of a single limit state function to describe system

3
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performance, leading to a description of the performance that has a binary distinction
(dividing the uncertain domain into two different domains, the safe domain and the
failure domain), and the predominant computational tools for its solution employ the
concept of design points.

Furthermore, depending on the nature of the limit state function, these
computational tools (FORM or SORM) may not always (i.e. for all design configurations)
provide accurate approximations, something that can be exploited by the numerical
optimization algorithm itself, converging to regions in the design space that correspond
to a large reliability approximation simply because of the inaccuracy of the algorithms
(FORM or SORM) used to calculate this reliability. This has incentivized researchers to
use methods relying on stochastic simulation for solving RBDO problems (Royset 2004;

Taflanidis and Beck 2008), although such approaches are not the standard.

1.1.1.2 Robust Design Optimization (RDO)

RDO methods on the other hand, seek to address modeling uncertainties by
explicitly attempting to reduce the standard deviation of the system response (Doltsinis
2004; Beyer and Sendhoff 2007; Tsompanakis et al. 2008; Lee et al. 1996). Various
approaches have been proposed in the literature for formulating and solving the RDO
optimization problems, mainly differentiated by (i) the methodologies adopted for
approximating the statistical measures involved and (ii) the assumptions utilized to
obtain the optimization objective. Typically, RDO is formulated by considering as

objectives the mean value as well as the standard deviation of the performance (though

4
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different statistical measures can be also utilized) (Beyer and Sendhoff 2007; Lee and
Park 2001), either within a multi-objective setting (Doltsinis 2004; Marler and Arora
2004) or, and perhaps more commonly, by formulating a single objective through the
introduction of an appropriate weight between these two competing objectives (Lee
and Park 2001; Dunning and Kim 2013). Different designs can then be attained through
this problem formulation either by varying the weight, establishing a different
compromise between the mean and standard deviation of the performance (response),
or approaching the problem as a truly multi-objective optimization. Frequently, this
optimization approach will provide designs that are fundamentally different in the
design space, but exhibit similar robust traits (i.e. similar values for the mean or
variance). Selecting the most suitable design among a set of such candidate robust
designs is then a challenging task, as it requires either some measure of
appropriateness, or that a design stands out from the rest because of its superior
performance (mean value) and robustness (standard deviation), which is not typically
the case as the two competing objectives usually conflict with one another.

The relationship between RBDO and RDO as well as their comparative
advantages and disadvantages has been examined in some studies (Beyer and Sendhoff
2007; Yao et al. 2011). In this dissertation, some attention is placed on RDO, especially
in the context of evaluating the appropriateness of different solutions obtained within
the RDO optimization formulation, which will be a secondary objective of this
dissertation. The focus is on a more generalized optimization under uncertainty

problem.
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1.1.2 Generalized Framework for Optimization under Uncertainty

Beyond RDO and RBDO, a more general framework for optimization under
uncertainty problems can be established by considering any statistical measure (i.e.,
expectation operator) of any desired system response function. This measure can range
from system fragility, to system risk, or to expected life-cycle cost (Aoues 2008; Royset
2006; Taflanidis and Beck 2009). In this framework, the objective function corresponds
to a multivariate probabilistic integral (over the domain of the uncertain model
parameters), and no other assumptions should be employed to support
generality/versatility of the developed tools. Given that for problems involving complex
system models, such probabilistic integrals can rarely be calculated or approximated
analytically, stochastic simulation [i.e., Monte-Carlo Simulation (MCS)]-based techniques
provide the only practical alternative approach for the estimation of the objective
function (Taflanidis and Beck 2008; Robert and Casella 2004; Kroese et al. 2011). In
MCS, N samples are initially drawn from a predefined distribution (proposal density).
Then, the system’s performance is evaluated for each one of those samples.
Subsequently, the desired expected value is approximated through the statistics of the
samples. The popularity of stochastic simulation has been increasing in recent years
(Royset 2004; Taflanidis and Beck 2008; Jensen et al. 2009) due to their general
applicability as well as the potential of exploiting advances in parallel/distributed
computing for efficiently performing the required independent evaluations of the
system performance (Papadrakakis and Lagaros 2002). Nonetheless, there exist a

number of significant challenges associated with this framework, and the primary

6
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objective of this dissertation is to formulate novel computational approaches to address

some of these challenges.

1.1.3 Challenges in Optimization under Uncertainty

The main challenges associated with optimization under uncertainty problems
when stochastic simulation is utilized to estimate the objective function are: the
existence of an unavoidable estimation error in the approximation (demonstrated in
Figure 1.1) and the high computational cost associated with each objective function

estimation (N model evaluations are needed to estimate the objective function once).

------ Analytical

—e— Stochastic

H(x)
Simulation

Figure 1.1 Analytical and simulation-based evaluation of an
objective function H(x) . Note the estimation error in the

evaluation based on stochastic simulation

The estimation error may be considered as noise in the objective function and
conflicts with classical deterministic optimization algorithms that assume the objective
function is exactly known (and commonly assumed as smooth). There exist two distinct

approaches through which the impact of the estimation error can be reduced: by
7
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reducing either its relative or absolute importance. The latter (reduction of absolute
importance) can be achieved by using a large enough sample set N or some variance
reduction technique to reduce the overall estimation error (Schuéller and Jensen 2008;
James 1985). Either of these two requires an additional computational burden either
directly (increasing N ) or indirectly (implementing and tuning an appropriate variance
reduction technique); thus, the focus is frequently on the reduction of the relative
importance of the estimation error. This can be achieved by using Common Random
Numbers (CRN), to create a consistent estimation error in the comparisons between
different design configurations (Glasserman and Yao 1992). This contributes to the
increase of the correlation between the estimates, which ultimately decreases the
variance of their difference. Important requirements for improving the efficiency of
stochastic comparisons when using CRN (Glasserman and Yao 1992) are continuity and
monotonicity of the system output with respect to the system model parameters. If that
output is sufficiently smooth, these two aforementioned requirements can be typically
guaranteed as long as the design choices compared are not too far apart in the design
domain, i.e., when the system configurations compared are not too different so that the
model parameter values have a similar effect on the system response (Taflanidis and
Beck 2010).

The use of CRNs can be integrated in different ways within the context of
numerical optimization algorithms (Kleinman et al. 1999). The most straightforward is
perhaps through adoption of an Exterior Sampling Approximation (ESA). ESA employs

the same stream of random numbers throughout all iterations in the optimization
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process, typically with N selected sufficiently large to reduce the absolute influence of
the estimation error, thus transforming the problem into a large scale deterministic
design problem that can be solved by any conventional algorithm.

The reduction of the absolute importance of the estimation error is an important
feature of ESA since the designs compared within the algorithm extend over the entire
design domain (and thus can be potentially very different), which does not necessarily
guarantee high efficiency of using CRNs (thus cannot rely only on reduction of relative
importance of absolute error) as discussed in the previous paragraph. Frequently,
gradient-free algorithms are selected in this context since they circumvent difficulties in
obtaining derivative information (Beck 1999; Lagaros 2002). Another drawback of this
approach consists of its dependence on the exact stream of random numbers used. The
qguality of the solution obtained through ESA is formally assessed by solving the
optimization problem multiple times for different independent random samples streams
(Taflanidis and Beck 2008; Spall 2003). Even though the computational cost for the ESA
deterministic optimization is typically smaller than the original stochastic problem, the
overall efficiency is expected to be worse because of the requirement to perform the
optimization multiple times.

The alternative sampling approach is interior sampling (Taflanidis and Beck 2008;
Spall 2003). This approach uses a different stream of random numbers at each iteration
of the numerical optimization algorithm, although CRN can be still be utilized within
each separate iteration if more than one evaluation of the objective function is

required, for example if numerical differentiation is employed (more on this will be
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discussed in following chapters). It should be stressed that reduction of the absolute
importance of the estimation error is not necessary when interior sampling is adopted
(the approach can be implemented with a lower sample size N compared to exterior
sampling) since the impact of the random number stream is addressed by changing it at
each iteration of the numerical optimization. A challenge in this case is that convergence
cannot be evaluated based on the objective function value estimates due to the high
variability in these estimates (error is not consistent among them since CRN has not
been utilized).

These computational challenges associated with stochastic simulation
techniques are particularly important when complex numerical models are employed
for describing the performance of engineering systems, something that is undeniably
becoming an increasingly popular trend due to recent advances in computers and
computational science that have encouraged researchers to develop models of higher
fidelity/accuracy (Gano 2005; Shan and Wang 2010). When such models are adopted
within the stochastic-simulation-based optimization framework, there is a significant
increase in the computational burden for each evaluation of the objective function,
creating an incentive to develop techniques that can improve the efficiency through
either employing adaptive variance reduction techniques to improve the estimation
accuracy without requiring a large value for N, or by adopting surrogate modeling
(metamodeling) approaches to approximate the initial computational intensive high
fidelity model (Beyer and Sendhoff 2007; Shan and Wang 2010; Shapiro 2003; Polak

2008). An additional challenge for such applications is that the system model frequently
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needs to be treated as a “black-box” (Shan and Wang 2010), thus requiring either
numerical differentiation/approximation (Spall 2003; Spall 1998b) to obtain derivative

information or the use of gradient-free algorithms (Jin and Branke 2005).

1.2 Research Objectives
Motivated by the previous challenges, the two general goals of this dissertation
are
(a) To improve the computational efficiency of stochastic simulation techniques
when implemented within a numerical optimization approach to solve design
problems that employ a probabilistic objective function.
(b) To provide a novel robustness measure to assess the appropriateness of a set
of candidate designs established within the RDO formulation.

Improvement of efficiency is sought through two distinct approaches: (a.1) by
formulating an adaptive importance sampling implementation to serve as a variance
reduction technique integrated within the numerical optimization approach or (a.2) by
establishing an adaptive surrogate modeling framework that considers simultaneous
approximation of the system performance with respect to both the design variables and
the model parameters. The first approach is more general and can be implemented for
problems with arbitrary numbers of model parameters and design variables, whereas
the second one has the fundamental assumption that the number of design variables
and model parameters is not large [less than 50 (Simpson et al. 2001c)].

Thus, three distinct specialized objectives are identified for this dissertation:
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1) Formulate an adaptive importance sampling framework for design under
uncertainty optimization problems. This framework will improve efficiency of
stochastic-simulation-based evaluations of the objective function by sharing
information across the iterations of the numerical optimization algorithm.

2) Establish an adaptive surrogate modelling methodology with a similar goal,
utilizing specifically a kriging metamodel. Consider a novel implementation of
the surrogate model in the augmented model parameters and design variables
space and develop efficient techniques for sharing of information between
iterations to improve the accuracy of the developed metamodel.

3) Offer a new measure for assessing the appropriateness of different RDO designs
and examine the impact of model prediction errors on this measure as well as
the RDO problem itself.

The first two objectives share a common foundation as they are based on
exploiting readily available information across the iterations of the optimization
algorithm in order to improve the numerical efficiency/accuracy during subsequent
iterations. To facilitate the sharing of information across these iterations, algorithms
that rely on local searches (such as gradient-based algorithms) need to be considered.
With this choice, the system configurations in adjacent iterations are similar (particularly
as the algorithm approaches a local optimum); therefore, information obtained at the
current iteration can be the basis for making decisions for subsequent ones. The third
objective pertains to developing a novel robustness measure that can quantify the

preference of a robust design among a set of candidate designs. Below some further
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background related to each of these objectives is offered, identifying the knowledge

gaps this dissertation ultimately aims to fill.

1.2.1 Adaptive Importance Sampling (IS)

For improving the accuracy of stochastic simulation methods, many variance
reduction techniques exist, and the most popular is importance sampling (IS) (Robert
and Casella 2004; Kroese et al. 2011; Papadrakakis and Lagaros 2002; Schuéller 2004). IS
relies on the introduction of proposal densities to concentrate the computational effort
in regions of the uncertain model parameter space that have a higher contribution to
the overall probabilistic performance, i.e. near the maxima of the associated integrand.
Selection of efficient IS densities, i.e. densities that lead to significant improvement in
accuracy, however, is a nontrivial task since numerical problems (namely divergence of
IS-based estimators) may arise when these densities are not properly chosen (Robert
and Casella 2004). The divergence typically occurs when the IS densities do not cover
the entire region of importance for the integrand. This is particularly true for problems
that include a large number of uncertain variables since the IS densities need to be
properly chosen for all of them (Au and Beck 2003). In such applications, it is generally
advisable to formulate IS densities for a smaller subset of parameters, consisting of only
the most influential variables (Taflanidis and Beck 2008; Pradlwarter 2007). Thus, two
aspects can be considered as the main challenges related to IS: (a) selection of efficient
IS densities, including their characteristics (balancing between improving accuracy and

avoiding numerical problems) and (b) selection of the specific variables for IS to target in
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high-dimensional problems. Many adaptive approaches have been proposed to address
(a), relying primarily on information obtained through samples that are distributed
proportional to the probabilistic integrand of interest (Ang 1992; Tang and Chen 2009;
Au and Beck 1999; Cappé et al. 2008). For (b), one of the proposed solutions relies
primarily on the qualitative characterization of the influence of the different model
parameters (Taflanidis and Beck 2008; Pradlwarter 2007). More importantly, little
attention has been given to efficient integration of these approaches within the context
of optimization applications to minimize the computational burden in selecting IS
densities.

The proposed research focuses on bridging the foregoing knowledge gap. It
focuses on the adaptive implementation of importance sampling (IS) across the
iterations of the numerical optimization. An optimal formulation of IS densities is
developed, extending to the selection of the type/shape of the IS distribution and of the
exact model parameters to concentrate in the IS formulation, and to the rules for the
efficient sharing of information across the iterations of the numerical optimization to

minimize the computational burden in developing the IS densities.

1.2.2 Adaptive Surrogate Modeling in the Augmented Design Variable and Model
Parameter Space

Surrogate models (also known as metamodels) replace a computationally
expensive model (normally a high fidelity model) with an inexpensive approximation

(Gano 2005; Kleijnen 1987) based on information (evaluation of the expensive model)
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gathered at some specially selected points, generally known as support points. Several
techniques exist within this greater family, such as polynomial response surfaces, radial
basis functions, kriging, and neural networks (Simpson et al. 2001c; Jin et al. 2001). All of
them have their own relative advantages and disadvantages, and the focus of this
research effort is on the kriging metamodeling approach since it is generally
acknowledged to offer accurate and computationally efficient approximations (Jin et al.
2003; Simpson et al. 2001b). Its advantages include: it is an exact interpolator, meaning
that the error at the supports points is zero; it corresponds to the Best Linear Unbiased
Predictor, BLUP, (Sacks et al. 1989); it facilitates an easy calculation of gradient
information; and it not only gives the prediction but also the associated uncertainty,
namely the local variance of the prediction error which can be explicitly incorporated in
the probabilistic performance assessment (Jia and Taflanidis 2013).

A critical issue for the accuracy/efficiency of surrogate models is the selection of
support points, an approach generally known as design of experiments (DoE). The most
popular methodology to accomplish this goal is to adopt a space filling technique such
as Latin Hypercube (LHC) sampling to evenly populate the domain of interest (Wang and
Shan 2007; Simpson et al. 2001a). This is expected to result in a smaller global error
between the surrogate model and the function that is approximated, i.e. it minimizes
the Integrated Mean Squared Error (IMSE) between these two (Park 1994; Van Beers
and Kleijnen 2004). Adaptive DoE has also been considered (Picheny et al. 2010; Bect et
al. 2012); in this case, a small number of initial designs is established (through a space-

filling technique), and then, based on this information, each additional design is
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obtained by formulating an optimization problem to select the support point that is
expected to minimize the IMSE.

This optimization includes a substantial computational burden but for problems
with highly complex numerical models (i.e. when the computational cost for performing
such an optimization is negligible when compared to the computational cost for
evaluating the system model) it can ultimately contribute to significant computational
savings without compromising the accuracy of the surrogate model.

Undoubtedly the most popular implementation of surrogate modeling concepts
within optimization applications is for the direct approximation of the objective function
(Simpson et al. 2001c; Jin et al. 2003; Wang and Shan 2007; Persson and Olvander 2013;
Lee et al. 2006; Huang et al. 2006). Nevertheless, surrogate modeling approaches have
been also considered within optimization under uncertainty design problems for directly
approximating the system response in the uncertain model parameter space (Jin et al.
2003; Persson and Olvander 2013; Eldred et al. 2002; Choi et al. 2001; Taflanidis 2012).
The design of experiments in this case has an even increased complexity since it
becomes crucial to obtain an accurate approximation in target regions of the model
parameters, the regions that contribute more to the integrand representing the
probabilistic performance (Picheny et al. 2010; Dubourg et al. 2011a). In other words,
minimization of IMSE is not necessarily an appropriate objective for DoE, and
modifications are needed to obtain accurate approximations in a target region. Some of
the aforementioned approaches have considered interaction-DoE formulations with this

goal in mind (Youn and Choi 2004) but have been constrained within RBDO formulations
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where the target region is conveniently just the failure domain. Additionally, these
efforts have not considered a setting relying on stochastic simulation (instead FORM and
SORM solutions were adopted in the RBDO framework). Finally, the potential
development of surrogate models in the augmented design variables and model
parameter space has not received appropriate attention. This concept has been recently
introduced (Taflanidis 2009), primarily out of necessity since surrogate modeling was
considered in the context of an augmented design formulation in which the design
variables themselves were uncertain. A more thorough investigation is needed to
properly explore the potential of such an approach.

The proposed research focuses on addressing these challenges and knowledge
gaps. It considers implementation of kriging for generalized optimization under
uncertainty problems when stochastic simulation is utilized to evaluate the objective
function. Formulation of kriging within the augmented space of the design variables and
model parameters is established, and an adaptive selection of support points and
tuning of the kriging characteristics is considered by sharing information across the
iterations of the numerical optimization algorithm (similar to the ideas established for
adaptive IS). Specifically for DoE, a hybrid approach is established combining a space
filling stage and stage targeting a specific region (where the integrand is considered
important). In contrast to other approaches (Picheny et al. 2010; Zhao et al. 2011;
Dubourg et al. 2011b), the proposed DoE targeteted support point selection is
established with no additional computational burden, relying explicitly on information

readily available within the optimization algorithm itself. The same approach is
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introduced for automatic selection of the order of basis functions needed for the kriging
approximation. Finally, the explicit consideration of the kriging prediction in the

probabilistic performance assessment is also addressed.

1.2.3 Assessing Appropriateness of RDO Designs

As outlined earlier, RDO problems typically lead to different candidate designs
through modification of the relative importance (to the overall performance objective)
of the mean and standard deviation of the system performance (response). Selecting
the most suitable design among such sets of candidate robust designs is generally a
challenging task as the two competing objectives usually conflict with one another. The
common approach (Beyer and Sendhoff 2007) for choosing the preferred design is to
use the distance (defined through some appropriate norm) from the ideal state, also
known as utopia point, corresponding to the minimum mean and standard deviation
treated as single-objectives for each instance. This requires definition of a proper norm
(to quantify distance), and establishing a proper weighting of the two objectives for this
purpose is not always straightforward.

An alternative formulation is considered in this dissertation based on a novel
robustness measure, termed probability of dominance, for assessing the
appropriateness of different candidate designs. This measure quantifies the likelihood
that a particular design will outperform the rival designs within a candidate set. The
impact of prediction errors between the real system and the assumed numerical model

are also addressed within this setting of assessing appropriateness/robustness of
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different designs. Though this error has been previously considered in RBDO problems
(Taflanidis and Beck 2010), that consideration was rather simple, focusing on direct
incorporation of a specific probabilistic model for the prediction error within the optimal
design problem. The research here extends to a deeper evaluation of the impact of the
prediction error on RDO design and on the probability of dominance, including the

consideration of different probability models for this error.

1.2.4 Outline of the Dissertation

In Chapter 2, the optimization under uncertainty design problem is discussed.
The generalized formulation and the RDO description are presented. Furthermore, some
common computational tools that are employed to facilitate different aspects of this
investigation are introduced. These are: Importance Sampling (IS), rejection sampling,
Kernel Density Estimation (KDE), and probabilistic global sensitivity analysis.

Chapters 3 and 4 are devoted to the development of methods that increase the
computational efficiency of existing optimization algorithms when stochastic simulation
is employed to estimate the objective function. In particular, Chapter 3 focuses on an
adaptive integration of IS within the numerical optimization algorithms. The challenges
of adaptively selecting the characteristics of the IS proposal density as well as the most
appropriate model parameters for the application of IS are addressed. The framework is
illustrated in an example considering the optimization of passive and semi-active
dampers for the suspension of a half-car model driving on a rough road. Chapter 4 then

discusses an adaptive kriging implementation. Formulation of the metamodel in the
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augmented design-uncertain model parameter space is considered, and important
issues such as the automatic selection of the order of basis functions for the kriging
approximation and the selection of support points for a targeted region are addressed.
The framework is illustrated for the same example as in Chapter 3.

Chapter 5 then deals with assessing the appropriateness of different candidate
designs within the RDO formulation. For this purpose, a novel measure, the probability
of dominance, is introduced and the impact of prediction errors for the system model is
investigated. Two different examples are considered to illustrate the framework; the
first corresponds to the optimization of a tuned mass damper and the second to
topology optimization for minimum compliance.

Lastly, Chapter 6 discusses the significance of the contributions presented in this

dissertation as well as future potential extensions.
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CHAPTER 2:

OPTIMIZATION UNDER UNCERTAINTY PROBLEM

In this chapter, the general optimization under uncertainty problem formulation
is initially outlined with some emphasis on RDO problems. Then a number of numerical
tools that will be used throughout the dissertation are discussed, namely (a) Importance
sampling for improving the numerical accuracy in estimation of probabilistic integrals,
(b) rejection sampling for obtaining samples from arbitrary distributions, (c) kernel
density estimation for approximating distributions based on samples and (d) global
sensitivity analysis for identifying the importance of individual model parameters to the
overall probabilistic performance.

A common nomenclature used in this chapter and throughout the proposal is
presented in Table 2.1. In the remaining chapters, individual nomenclatures for the

terminology established within that chapter are additionally offered.
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TABLE 2.1

RELEVANT NOMENCLATURE FOR CHAPTER 2

Maximum of the quotient used

(Hat) Estimate using

4 in rejection sampling stochastic simulation
. «th
1) Coefficient of variation ’ (Subscript)i™ component of
vector
0 uncertain model parameters - (Superscript) ;" sample
¢) Uncertain Space K() One dimensional kernel
; Kernel density estimate using
J k .
073 Sample set ‘) fix-window bandwidth
!DDF proportional to. the. Number of samples for
7(0]X) | integrand of the objective N o .
. . stochastic simulation
function for given x
Marginal distribution for &,
77(@ %) gl Istriouti f N, Total number of kernel
based on 7(0]x) ‘ samples
0 %) KDE estimate for marginal ) o of
7(6 | x
i distribution for 6 o Dimension of 6
Standard deviation of samples oi o of
o} n
; from 7(8|x) for 6 B imension of x
Relative entropy between two Probability density function
D(1.) oY p(6) yaensty
arguments for 0
. Importance sampling
EJ. E tat t r(.
[.] xpectation operator () quotient
E L] Expectation under probability ; fixed-window bandwidth
It distribution p ! parameter for KDE for 6,
Importance sampling Uniformly distributed random
/(9) " ! . u )
probability density function variable
Proposal density in rejection . .
. , Variance under probability
P ling f t Vi
f7(0) | sampling for generating arp[] distribution p
samples from (0| x)
h(x,0) | Performance function X Admissible design space
H(x) | Objective function X Design variables
Estimate of objective function
[f[(x| {6/1)| through stochastic simulation X Optimal design solution
using set {0’}
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2.1 Optimization under Uncertainty Problem Formulation

Consider a system that involves some controllable parameters that define its
design, referred to as design variables, and let x =[x, x,,...,x, ]e X cR™ be the design
vector, where X denotes the bounded admissible design space. Let

0=[6,6,,...0, e ®cR"™ be the vector of uncertain model parameters (random

variables) of the system, where ® denotes the set of their possible values (uncertain
space). In addition, let A(x,0):R"x R” -R be the performance function

characterizing the favorability of the system-model response. Note that this ultimately
corresponds to an augmented model description, and generally a distinction of separate
excitation (disturbance), system, and performance evaluation models is established in

most engineering applications (these can be then augmented into a single system). The

first two models provide the system response, denoted by z(x,0) — R™ herein, and the

performance evaluation model /(x,0) c R assesses the favorability of that response.
For many practical engineering applications, evaluation of the system model response
corresponds frequently to a computationally demanding and black-box type of task. The
developments offered in this dissertation are particularly appropriate for such
applications. Even for these types of problems, the performance evaluation model is
typically of lower complexity, a characteristic that is exploited in Chapter 4. Note also
that in most engineering applications, /(x,0) is a strictly positive function, although

that assumption is not explicitly enforced herein.
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To address our incomplete knowledge about the system and excitation
characteristics, a Probability Density Function (PDF) p(0) is assigned to the model
parameters. Selection of p(0) depends on the specific design problem considered; for
example, it can be established as a state-of-knowledge model based on information
theory principles (Jaynes 2003). The focus on this dissertation is not on how to select
that PDF but rather on how to solve the resultant design problem.

The performance function /4(x,0) depends upon both the design variables x as
well as uncertain parameters 0, and it is a random variable itself (stemming from the
uncertainty in 0). The probabilistic performance is given by the expected value of

h(x,0) over the uncertain model parameter space
H(x) 2 E,[h(x,0)] = | h(x,0) p(8)db, (2.1)
where E[.] corresponds to the expectation operator and Ep[.] denotes explicitly the

expectation under probability model p(0). Different selections for A(x,0) facilitate
different descriptions for the probabilistic performance. The formulation in Eq. (2.1) is
thus very powerful, and it can be used to describe problems ranging from probability of
failure, to system risk, to expected life-cycle cost, to RDO (Aoues 2008; Royset 2006;
Taflanidis and Beck 2009).

Within this setting, the density that is proportional to the absolute value of the
integrand has a particular importance, as it provides critical information about the local

and global behavior of the probabilistic performance. This density is defined as

24

www.manaraa.com



|h(x,0) [ p(8)
o #(x,8) [ p(8)d6

7(0]x) = I oc| h(x,0) | p(8), (2.2)

where oc denotes proportionality and the denominator in the first equality corresponds
simply to a normalization constant [so that integration of 7(0|x) over ® yields one]
and is referenced as £, henceforth (but not explicitly needed).

The typical convention that smaller values of A(x,0) correspond to a more
favorable performance, i.e. /(x,0) corresponds to a certain cost function, is adopted
herein. We are then interested in the optimal design problem

x" =argminH (x), (2.3)

xeX
where any deterministic constraints have been incorporated in the definition of the

admissible design space X .

2.2 Solution through Stochastic Simulation

For problems with complex system models, analytical evaluation or the
probabilistic integral in Eq. (2.1) is frequently impossible, and as discussed in the
introduction, stochastic simulation (i.e., Monte Carlo (MC) estimation) is considered

throughout this research effort for this purpose. In its simplest form, Direct Monte Carlo

simulation (advances will be discussed later) is a set of random samples (numbers) {0’}

that are independent identically distributed (i.i.d) according to p(8), denoted 0’ ~ p(0),

and is employed to obtain the approximation of the performance function given by the

sample average of the system performance function
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H(x)= %Zh(x,ﬂf ). (2.4)

The notation I:](x| {0/1) is also utilized to explicitly denote the dependence of Fl(x) on

the sample set {0’}. Herein, superscripts are employed to denote sample and {.} to

denote sample set. The stochastic simulation process is illustrated in Figure 2.1.

0’ ~ p@®) :

6! o— h(x.61)

62 06— h(x.6%)

03 06— h(x.6%)

6 o— h(x.6%)

6% o— h(x.0°)

Y o— h(x.6")
Sample Performance

Set ~—

—

Figure 2.1 lllustration of the stochastic simulation process
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The accuracy of H can be determined by the Coefficient of Variation (CoV) &,

which can be obtained utilizing the sample set {0’} .

1 JVarp[h(x,G)]_ 1 \/Ep[(h(xaﬂ))z]—l‘[(x)z

JN  H®X) JN H(x) ’
. (2.5)
1 IN%
B AT T B T R

where Var,[.] stands for variance under probability model p(0) and is defined as

Var, [h(x,0)]=E, | h(x,0)" |~ E,[1(x.0)] =E,| h(x,0) |-H(Xx?,  (26)

where H(x) can be approximated by Eq.(2.4) and the second moment similarly by
2 1 < 2 j
%M@m]:ﬁ;h@ﬂ> (2.7)

Thus, the stochastic simulation approach provides not only an estimate for the
objective function but simultaneously a measure of the accuracy of that estimate. The
latter can be utilized to guide the selections for the sample size used (choose N to

establish a required accuracy threshold). Additionally, due to the independence of the
samples {0’}, the approach can easily exploit parallel implementation for the
evaluation of the system performance {#(x,0’);j=1,...,N}, a characteristic that has

contributed to the increasing popularity of such stochastic simulation-based techniques
for uncertainty propagation (stemming from the increased popularity of multi-core

computer architecture and high-performance clusters).
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Finally, optimization in Eqg. (2.3) may be performed by substituting H(x) for
I:I(x) in Eq. (2.4) as the objective function, leading to the stochastic optimization
problem

x" = argmin A (x). (2.8)

xeX
A review of appropriate techniques and algorithms for this problem is presented in

Section 1.1.3.

2.3 Robust Design Optimization (RDO)
RDO problems are of particular interest in this research (see Chapter 5). In this

case, two different statistical measures of 4(x,0) are typically employed to characterize

and address the impact of uncertainty in the description of the system model (Doltsinis

2004; Park et al. 2006). The first measure is the mean value for 4(x,0) given by

u(x) = E, [h(x,0)] = j@h(x,e) P(0)d6, (2.9)

whereas the second measure is the standard deviation of 4(x,0), given by

o) =E, [ 1(x.0)" |-, [n(x.0)] =[] hx.00 (@0 - ux)*.  (2.10)
Note that o(X) corresponds to the variance of A(x,0), Var,[h(x,0)], whereas p(x) is

ultimately equivalent to the objective function used in the generalized optimization
under uncertainty problem formulation, H(x).
RDO establishes a compromise between the minimization of the mean value of

the performance and the minimization of the spread of this performance around this
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mean value. The former directly influences the robustness characteristics of the
approach by implicitly providing a measure of variability in the model. These two
statistical measures define the feasible objective space given by
F(x) =[u(x)o(x)] e F cR*. Often, these conflict with each other; therefore, the RDO
problem can be viewed as a multi-objective minimization of (x) and o(x). A key
feature of the objective space F is the utopia point, corresponding to the minimum of
u(x) and o(x), when each of them is viewed as a separate objective. This point
corresponds to the best solution in F, but in general is unattainable. The compromise
between u(x) and o(x) is typically expressed through the Pareto front, composed of
the designs for which no other feasible design exists that will simultaneously improve
both competing objectives (in other words, it cannot make one better without making
the other worse) (Marler and Arora 2004).

Several different methods have been proposed for formulating/solving the multi-
objective RDO problem (Marler and Arora 2004; Deb and Gupta 2006). A popular
approach is to employ the weighed sum approximation as the objective function in
which a single objective is formed by employing a weighted linear combination of w(x)
and o(x). It should be stressed that through this approach the entire Pareto front
cannot necessarily be obtained; only solutions lying on its convex approximation are
ultimately identified. Nevertheless, this is the most popular formulation for RDO
problems, and the one adopted in this study, leading to the optimization problem of

finding
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X" =argmin H,,,(x), (2.11)

xeX
where, again, any deterministic constraints are incorporated in the definition of the

admissible design space X and the objective function is defined as

Hypo(x) = (1-w) H(x) +w0(x), (2.12)

n n

where we[0,1] is the weight parameter and x,, o, are normalization constants for
the mean and standard deviation, respectively. Commonly, #, and o, are selected as
the minimum mean and standard deviation (Lee and Park 2001), denoted by £, and o,

, that can be obtained by solving Eq. (2.11) when considering w=0 and w=1,
respectively. The point [u, 0,] is in fact the utopia point. Moreover, the solutions to the
probabilistic integrals in Egs. (2.9) and (2.10) are challenging to obtain since close form
solutions often do not exist. Thus, different approaches have been proposed in the
literature for solving the optimization problem in Eqg. (2.11), mainly differentiated by the
methodologies adopted for approximating the aforementioned integrals. References
(Doltsinis 2004; Beyer and Sendhoff 2007) offer a detailed review of these methods in
the context of RDO. Within this study, a stochastic simulation approach, as outlined in

the previous section, is adopted for evaluation of the necessary statistical measures.

2.4 Computational tools
This Section reviews a variety of computational tools that are frequently utilized

in this investigation.
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2.4.1 Importance Sampling (IS)

The premise of importance sampling is to introduce a proposal density f(0)

that (when selected properly) concentrates the computational effort within a stochastic
simulation setting in regions of the uncertain model parameter space that have higher
contributions to the overall probabilistic performance, i.e. near the maxima of the
associated integrand.

For this purpose the integral in Eq. (2.1) is first transformed to

H(x)= J. h(x,0) ?EB; £(0)do = _[ h(x, O)r(ﬂ))f(ﬂ)dﬁ E [h(x,0)r(0)]. (2.13)
In this case, 7(0) = p(0)/ f(0) is defined as the IS quotient. The estimate for Eq. (2.1) is

then obtained though

H(x)= %ZN:h(x,OJ ¥ (07), (2.14)

where {9’} are independent identically distributed (i.i.d) samples of the model
parameters that follow the distributions f(0) [instead of p(0) utilized in direct Monte
Carlo estimation]. The coefficient of variation of the estimate in Eq. (2.14) is now

computed as

5= 1 \/Var [A(x,0)r(0)] | \/Ef [(h(xaﬂ)r(ﬂ))z}_l_](x)z
N HX) =
AN NPRE (2.15)
1 \/Ef [(h(X,B)r(B))ZJ 1 N;(h(x’g./)r(e/)) |
_ N Hxy ) JN ]_}(X)z -L
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where, like in Eq. (2.5), the approximation in the last equality is established by using
stochastic simulation to calculate the necessary probabilistic integrals.
The optimal (but impractical) choice for IS density is (Robert and Casella 2004;

Kroese et al. 2011)

|h(x,0) | p(8)
j®|h(x,e)| 2(0)d0

£7(8)= 7(0]x), (2.16)

which is equal to the density introduced in Eq. (2.2). If properly chosen, IS can lead to
significant improvement in accuracy, especially when the integrand in Eqg. (2.1) has a
significantly different shape than p(0) because creating samples according to the latter
distribution (corresponding to a direct Monte Carlo approach) concentrates the
computational effort in regions with small importance to H(x). In addition, it means
that A(x,0) exhibits strong sensitivity with respect to 0, high enough to create a
difference between p(0) and A(x,0)p(0). In the design space X, this is anticipated to
occur more prominently in regions closer to local minima, where smaller values of
h(x,0) are anticipated for regions in which the density p(0) has larger values, leading
to bigger differences between p(0) and the integrand.

Based on Egs. (2.16) and (2.15), the common practical guidelines (Taflanidis and
Beck 2008; Robert and Casella 2004) for developing IS densities are: (i) concentrating
most of the probability distribution (and thus the effort in the stochastic simulation)
close to the local maxima of the integrand in Eq. (2.1), while also (ii) avoiding large
values for the IS quotient 7(0) stemming from small values of f(0) compared to p(0)

in regions where the integrand is still relatively important. The latter means that the
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tails of distributions are of significance for the IS formulation and may even lead, at the
extreme case where 7(0) is not bounded, to convergence problems for the estimator in
Eq. (2.14) (Robert and Casella 2004). This challenge can be avoided by having IS
densities with big enough bandwidth to cover most of the regions for which p(0) is
important. An excessively large spread, however, reduces the effectiveness of the IS
densities, i.e. increases the coefficient of variation. Ultimately, selection of IS densities
(especially their spread) is always a compromise between the aforementioned (i)-(ii)

goals.

2.4.2 Rejection Sampling

Rejection sampling is a versatile algorithm for obtaining independent samples
from a particular distribution (frequently referenced as the target distribution) based on
samples that have been generated from a different distribution (Robert and Casella
2004). In this investigation, it is utilized to obtain samples from the auxiliary density
function 7(0|x) of Eq. (2.2).

In particular, implementation of rejection sampling is considered here in the

context of the estimation of the objective function using stochastic simulation, when
evaluations of A(x,0) are readily available for a set {9"'} corresponding to a proposal
density f7(0). This proposal density may correspond to /(@) in the context of
evaluating Eq. (2.14) or p(0) in the context of evaluating Eq. (2.4). In this case, and

since the evaluations have been already established, the rejection sampling simplifies to

the following procedure. First estimate
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y:sfm%m[UK&BU|§§%%%} (2.17)

where s, >1 is a factor to guarantee that y is larger than the maximum of the quantity

in brackets estimated over the entire domain ® and not simply over the samples

available. Then for each sample compare

(h(x.00) | 2O
TACO RN (2.18)

u]

where u’ are samples uniformly distributed in [0,1]. If the inequality at Eq. (2.18) holds,
the sample 0’ corresponds to a sample from 7(0|x). The efficiency of this approach,
evaluated by the number of samples obtained, is on average N/(¢, 7) (Robert and
Casella 2004), where ¢, is the normalization constant for 7z(0|x). This shows that s,

should be selected as small as possible. In general, the efficiency of rejection sampling

depends on how similar /(@) is to the target density.

2.4.3 Approximation of Density Based on Samples and Kernel Density Estimation (KDE)
Approximation of an unknown probability density function utilizing only
information from samples from it is a problem encountered frequently in engineering
applications (McLachlan and Peel 2004; Martinez and Martinez 2007). Parametric
approaches can be implemented for this purpose; this involves choosing a family of
densities parameterized through some vector and then selecting values for that vector
based on the information in the available samples (match statistical characteristics or

maximize likelihood of samples) (Martinez and Martinez 2007). The challenge with
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these parametric approaches is that for the simpler ones, the efficiency depends on how
closely the family of densities considered matches the target density, whereas for the
more advanced ones that in general facilitate more robust approximations, the
definition of their characteristics involves some extra computational burden. For
example, mixture models typically require an explicit optimization for the number of
densities considered and potentially a clustering of the samples each mixture model
approximates.

Beyond parametric approaches, nonparametric techniques also exist and
generally enjoy greater robustness and efficiency. Kernel density estimation is widely
acknowledged as one of the most powerful density estimation techniques in this family
and is the one ultimately preferred in this dissertation. KDE is obtained by centering
some smooth, symmetric kernel over each of the samples (see Figure 2.2). This kernel
has a specific shape and bandwidth, i.e. the region over each sample that the kernel
ultimately impacts. As long as sufficient samples are available, KDE may efficiently
approximate challenging distributions of interest (Epanechnikov 1969), even
distributions with multiple modes, i.e. with distinct and well separated regions of high
probability density values. For addressing multivariate KDE, the product rule may be
utilized since it provides enhanced flexibility in separately selecting the form of the
kernel in each dimension (Epanechnikov 1969; Silverman 1986). If N, samples {0} are

th th

available from the target distribution, with €’ denoting the i component of the s
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sample [so the samples available for 6 are {6’}], the fixed-bandwidth product KDE

kd(ﬂ)—%Z[ﬁ{%{Kﬂ—Q ;‘9; HH (2.19)

where K(.) is the chosen univariate kernel and ¢ is the bandwidth parameter defining

takes the form

the spread of the Kernel for the i” dimension. The selection of bandwidth is a critical
issue in providing satisfactory approximations; large bandwidth leads to over-smoothing
of the derived densities, whereas small bandwidth leads to spurious noise in the
approximation.

Several univariate kernels have been proposed in the literature (Scott 1992); one

of the simplest and most popular is the Gaussian kernel given by

K(1) =ﬁe‘“. (2.20)

For this kernel, an optimal selection of the bandwidth parameter that minimizes the
asymptotic mean integrated error (AMISE) between the approximation in Eq. (2.19) and
the target distribution (assumed in this case to be a Gaussian distribution in order to

obtain a close form solution) is (Epanechnikov 1969)

1

tiAMISE _ # o, (2.212)
N, (n,+2)

where o, is the standard deviation of the samples {£’}. This ultimately leads to a

simple closed-form solution for the bandwidth [as opposed to more computationally
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demanding approaches (Mugdadi and Ahmad 2004)], which is the main reason for its

popularity. Figure 2.2 illustrates the concept of sample-based KDE.

05— Approximated density
- — - Indivisual Kernel

041 X Samples

= 03}
N
N
~
02t
- R N N e o e
0 A \( )(//)‘\)\\\/1\/\}\“‘/ \\
0.1F /A 1 \l\ 1 \/\/‘)(/// M)
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Figure 2.2 Example of Kernel Density Estimation based on samples

In some instances, generation of samples from k,(0) are also needed in this

dissertation. This task is straightforward since the distribution given by Eq. (2.19)

corresponds ultimately to an N, -fold mixture of the parent kernel distribution K(.) ; it

simply requires sampling an index s from a discrete uniform distribution in [1 N ] and

then generating samples from distribution K((é’i—é’f)/t,.) independently for each

component of 0.
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2.4.4 Probabilistic Global Sensitivity Analysis

Global sensitivity analysis techniques aim to quantify the importance of each of
the different model parameters 6. to the overall probabilistic performance. Various
such approaches exist, such as Sobol indices or Analysis of Variance (ANOVA) (Sobol
2001; Archer et al. 1997). In this investigation, a recently proposed global sensitivity
analysis (Taflanidis and Jia 2011; Jia and Taflanidis 2011) that utilizes the definition in Eq.
(2.2) is adopted for this purpose since it can be implemented using information readily
available from the evaluations of /(x,0) within a stochastic simulation setting.

The sensitivity analysis is established by comparing the marginal distributions
p(0) and 7(6,|x). The importance for each model parameter is then quantified by
using the relative information entropy, which is a measure of the difference between

7(6,x) and p(6)), and is expressed through

D(x(8,1%) | p(@)) = [ 7(8 |x>log{%}da. (2.2

1

For efficient calculation of the relative information entropy, approximation of

7(6, 1 x) through its samples { &’} and KDE has been proposed (Jia and Taflanidis 2011).
For this purpose, a sample set {0’} from 7(0|x) is first obtained. Projection of this set

to each model parameter leads then to samples {8’} from 7(6, | x) that can be used to

obtain a KDE-based approximation as in Eq. (2.19). Since we are interested in scalar

variables, the approximation in this case simplifies to
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B _LNS 1 0 -0
”(0"|X)_NS;(4. [K[—ti ]D (2.23)

where 7(0,|x) denotes the KDE-based approximation to 7(6.|x) and ¢ is the optimal
AMISE bandwidth given for the Gaussian kernel by Eq. (2.21) with n, =1 (since the
density approximation is implemented for scalar quantities here), which simplifies to
t.=1.06:N,"c,, with o, corresponding to the standard deviation of the samples {0’} .

The approximation for the relative information entropy in Eq. (2.22) is finally

(Beirlant et al. 1997)

D(z(6,|x) || p(8)) = j 0 \x)log[mjd@, (2.24)
bu p(6)

where the last scalar integral can be numerically evaluated and [b, , b,] is the region

for which samples for 7(6.|x) are available (Jia and Taflanidis 2011). Parameters with

higher values for D(7(6,|x,)|| p(6))) have higher importance to the probabilistic

performance (Jia and Taflanidis 2011).
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CHAPTER 3:

OPTIMIZATION UNDER UNCERTAINTY WITH ADAPTIVE IMPORTANT SAMPLING

This chapter offers an adaptive implementation of importance sampling (IS)
across the iterations of the numerical optimization described through Eq. (2.8). Recall
the two main challenges in IS: (a) selection of efficient IS densities, including their
characteristics (balancing between improving accuracy and avoiding numerical
problems) and (b) selection of the specific variables for IS to target in high-dimensional
problems. The advances offered here address both these challenges.

Although the proposed IS approach can be combined with any optimization
algorithm relying on local search (such as gradient-based techniques), the Simultaneous
Perturbation Stochastic Approximation (SPSA) (Kleinman et al. 1999; Spall 1998a) with
Common Random Numbers (CRN) is chosen for this purpose. Similar to the work of Ang
et al. (Ang 1992), the formulation of IS densities is based on samples that are distributed
according to the integrand of the objective function, with Kernel density estimation
(KDE) adopted for density approximation and its characteristics optimally selected by
maximizing the anticipated accuracy for the performance objective estimate if these
densities were to be implemented as IS densities. The main novel contribution of this

work is the development of new approaches for facilitating this adaptive formulation of
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IS densities without adding to the computational burden using only system evaluations
that have already been performed (when evaluating the objective function in previous
iterations of the optimization algorithm). A new, robust selection of the KDE
characteristics is additionally proposed considering higher order statistics for the
expected accuracy, and to avoid numerical problems when trying to develop an IS
density for all model parameters; a relative prioritization is introduced. This is
established by integrating a recently developed global sensitivity analysis (Taflanidis and
Jia 2011; Vetter 2012) to quantify the relative importance of individual model
parameters to the overall probabilistic performance. Development of IS densities is then
considered only for the most important ones. Ultimately, the global sensitivity
comparison provides a relative prioritization for each uncertain model parameter,
whereas the optimization for the expected accuracy provides an optimal selection of the
characteristics of the IS densities and of the exact number of model parameters
considered in the IS formulation. Within the optimization framework, this methodology
is implemented across the different iterations (searching for the system optima), and
guidelines for the efficient sharing of information are established, imposing ultimately a
minimum additional computational burden (no new system response evaluations) for
performing the global sensitivity analysis and selecting the IS density characteristics.

The nomenclature specific to this chapter is reviewed in Table 3.1.
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TABLE 3.1

RELEVANT NOMENCLATURE FOR CHAPTER 3

Perturbation direction for

Functions f,r established for

sp ~ N
A gradient approximation in SPSA S, 7 w,&
5, Targetc value of coefficient of k() Pilot kernel estimate
variation &
5 Coefficient of variation for new k() Kernel density estimate using
proposal density o adaptive bandwidth
o' Total number of available (Subscript) k" iteration of the
samples for Kernel formulation * optimization algorithm
0° Samples from 7(0]x) f Total number of kernel samples
e local bandwidth factor for s Estimated value of N' to
sample | establish &,
£ Remaining components of 0 N Number of kernel samples
excluding w “ obtained in current iteration
= Choices of £ and W for next Minimum nur_nber_of kernel
Ew ) ) ) N,.. | samples obtained in current
iteration of algorithm . .
iteration
Densi ional
7(0]x) | . ensity proportional to n, Dimension of w
integrand
#0]%) KDE approxmat}on to density n, Dimension of &
proportional to integrand
s Importance sampling density
KDE tivity fact W
T sensitivity factor q(w) for subset W
.| Adaptive-window bandwidth s Allowable entropy percentage
@ parameter for s” Kernel ¢ reduction for definition of D,
Step size for gradient . . .
sP s
c approximation for SPSA A Outlier detection scaling
i | Cut-off value for entropy , bandwidth parameter for 6.
d Vector of kernel characteristics | ™" | AMISE optimal bandwidth
£(0) Importance sampling W Current subset of 0 for which
probability density function IS is considered
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3.1 Optimization Formulation
The iterative numerical optimization algorithm for solving Eq. (2.8) is described

within this chapter as
Xk+1 = Gopt(xk |{9j}k)7 (31)
indicating that solution at iteration &k +1 is obtained based on the solution at iteration &

through the function ant representing the recursive relations of the optimization

algorithm. Sample set {Oj}k is used within the iteration, and this sample set ultimately

changes from iteration to iteration (interior sampling). Herein the subscript £ denotes
the iteration of the numerical optimization algorithm. The goal is to share information
across these iterations about the behavior of the probabilistic integrand to improve the
stochastic-simulation-based evaluation of the objective function. This ultimately means
that the designs at iterations k+1and k& cannot be significantly different as then this
information would be erroneous. As such, algorithms relying on local searches need to
be adopted for the iterative optimization described by Eq. (3.1). The specific algorithm
considered here, is the Simultaneous Perturbation Stochastic Approximation (SPSA)
(Kleinman et al. 1999; Spall 1998a) with Common Random Numbers (CRN), an algorithm
that is appropriate for problems in which the system simulation for estimating 4(x,0)is
a “black box” for the designer and as such, numerical differentiation is the only feasible
approach for obtaining derivative information. There is a wealth of literature regarding

SPSA, and the details of the method, i.e. the definition of G are presented in

opt?

Appendix A (Spall 2003; Spall 1998a).
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3.2 Adaptive Importance Sampling Foundation

In the proposed framework, IS densities are formulated by sharing information
across the iterations of the optimization algorithm described through Eq. (3.1) (an
illustration of the sharing process can be observed in Figure 3.1). Both the

characteristics of the IS densities, and the subset of 8 for which they are formulated are

adaptively chosen in this process. At iteration k, let w, denote the subset of 0 for
which IS is formulated and ¢, (w,) correspond to the selection of their joint density. If
€, corresponds to the remaining components of 8 (such that®@=[w, &,]), the proposal

density in Eq. (2.13) for the k" iteration is transformed to f,(0)=¢q, (w p&, |W,))

leading to IS quotient

0
rk(e): p( ) — p(wk)p(ék |wk) — p(wk) :rk(wk). (32)
S @) g, (w)pE,|w,) g, (w,)
Note that this quotient is only a function of w,(and not of entire vector®); the

simplified notation 7,(w,) is also used henceforth. The estimate for objective function

becomes

A(x, | (07),) = lekhm,e,{)rk(w,{ ) (3.3)

=
where w/ are samples from ¢, (w,), & are samples from p(§,|w,), and N,
corresponds to the number of samples used. Recall that {0’ }, ={w] &/}, is the

sample set employed in the k" iteration. Note that the underlying assumption for Eq.

(3.2) is that the marginal distributions can be readily obtained based on the joint
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distribution. It is important to point out that this is not always straightforward and a

transformation of probability spaces, for example transformation to standard Gaussian

space (Au and Beck 2003; Melchers 1999), might be required to accomplish it.

\
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) f.,(0)

X
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Figure 3.1 Illustration of sharing of information between iterations
k and k +1 for an arbitrary problem to obtain efficient proposal

densities

During this evaluation of the objective function, SPSA (the optimizer) requires

evaluation of the perturbed designs h(x, +c; A)",0) and A(x, —c; A}’,0), rather than

evaluations of A(x,,0), to construct the gradient approximation. Therefore, the IS

formulation could be established based on either of the perturbed designs x, tc; A} ;

however, the choice here is to use both and linearly interpolate for /(x,,0) to obtain

the performance given a set {Gj}k. This choice does not require additional function

evaluations of the system’s model.
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h(x,,0) ~ %(h(xk +c A, 0)+ h(x, —c,fPA,f",e)). (3.4)

The liner interpolation of A(x,,0) approaches the true value of the performance
function as c,fP approaches zero (c,fP —0). The approximation of the objective function

at x, is then established using the interpolated values of Eq. (3.4) in Eq. (3.3). The

estimate for the coefficient of variation, which will be used to evaluate the accuracy, is
then provided by Eq. (2.15) considering the specific IS formulation in Eqg. (3.2) and

ultimately corresponds to

Ny

1 ) S \2
| P UCEATILA)
S, ~ ko ~1. (3.5)

\/Vk [:[(Xk )’

Note that the approximation for A(x,,0)in Eq. (3.4) is only used to make

decisions for the IS density formulation; it is not used in the optimization algorithm
which requires A(x, +c;"A)",0) and h(x, —c;"A,0) to be separately used for the

gradient approximation in Eq. (A.2).

3.2.1 Proposal Density and Approximation through Samples
Based on Eq. (2.16), the target IS PDF at the & iteration is
7(0]x,) o h(x;,0) | p(8), (3.6)
where again o denotes proportionality. Approximation to this PDF through samples
from it using KDE is considered. To obtain the necessary samples from 7(0|x,), the
readily available evaluations of A(x,,0) for set {0’} are used within the rejection
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sampling approach discussed in Section 2.4.2. This is established by using
q,(w,)pE, |w,)=f,(0) as the proposal density f”(0) within the algorithm, leading
to

7o =5, -max| | A(x,,0) |7 (w)) . (3.7)

and acceptance of samples based on comparison (samples are accepted when below

inequality holds)

(%, 0) (W)
u«/’

Vi - (3.8)

A relaxation is further proposed here to guarantee that enough samples are
obtained to inform the formulation of IS densities. This relaxation is established by

allowing s, <1 and ultimately corresponds to modification of 7(8]x,) to

7(0|x,) oc min[y,,| h(x,,0) |7 (W)]q, (W,) P, |W,), (3.9)
where min[i, j] corresponds to the minimum of the two arguments i and ;. If
7, >max(| h(x,,0)|r.(w,)), Eq. (3.9) equals Eq. (3.6). Thus, the selection of y, (and
consequently of sf) is a compromise between obtaining sufficient samples from

7(0]x,) and also having a proposal density Eq. (3.9) that is similar to the optimal one
given by Eq. (3.6).
This rejection sampling approach leads to a set of N, samples, denoted {8°},,

from the density Eq. (3.9). Rather than relying on samples only from the current
iteration, samples from multiple previous iterations can be utilized, with the ultimate

goal to obtain a sufficient total number of samples N, to better inform the IS
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formulation. This augmented set will be denoted as {0"},, composed of the {0}, as

well as samples obtained in previous iterations, with the selection of the exact number

of total samples discussed later. An approximation for 7(0|x,) denoted 7(0|x,) may

then be established using these samples. Thus, the questions that need to be address

are:

(a) How can we adaptively construct the IS densities based on the obtained samples?
This pertains to both the type of density as well as its characteristics.

(b) How can we adaptively select the new subset of 6, denoted w,, for which these
densities should be established (note that this will not be necessarily the same as

the subset chosen for the current iteration w,)?

Section 3.2.2 examines question (a), while section 3.2.3 examines question (b).

3.2.2 Selection of IS Densities and Its Characteristics

The sample-based density approximation approach considered in this work is
kernel density estimation (KDE) (introduced in section 2.4.3), which belongs to the
greater family of non-parametric density estimation methods. KDE may efficiently
approximate challenging distributions of interest (Epanechnikov 1969), even
distributions with multiple modes, something that is of importance since 7(0]x,) can
have multiple modes, even if it p(0) does not. This is the reason KDE is preferred here
over alternative parametric density approximation approaches (Silverman 1986) that

have been considered for IS formulation (Au and Beck 1999; Melchers 1989).

48

www.manaraa.com



Because the approximation at the tails of the IS distribution is of importance
(recall the discussion in section 2.4.1), following the recommendations in (Ang 1992;
Cappé et al. 2008), an adaptive kernel bandwidth formulation is considered (Abramson
1982), and for addressing multivariate KDE, the product rule is adopted herein since it
provides enhanced flexibility in separately selecting the form of the kernel in each
dimension (Silverman 1986; Scott and Sain 2005).

For the subset w, —0 with dimension 7, and based on the available samples

{W,}, (corresponding to the respective subset of {8°},), the product kernel in Eq.

(2.19) with adaptive bandwidth transforms to

i i R e
g(W) =k, (W, |d)= VZ[H{M {K (W’“/wiwkl HH (3.10)

where K(.) is the chosen kernel, d is the vector of kernel-characteristics (defined later),

A’ is a local bandwidth factor, ¢ is the fixed-window bandwidth parameter defining the

th

spread of the kernel for the i" variable w,, (respective component of w, ), and {w}.},

are the corresponding samples for it. For bounded parameters, boundary correction
KDE approaches should be used to circumvent approximation problems close to the
boundaries (Jia and Taflanidis 2011; Karunamuni and Zhang 2008). The chosen product
kernel facilitates an easy implementation of such corrections since it allows them to be
established independently for each parameter (Jia and Taflanidis 2011).

For A° equal to 1 (or to any constant), the approximation in Eq. (3.10)
corresponds to the fixed-bandwidth kernel [similar to the one discussed in Eq. (2.19) but
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considering only the W, subset of 0 ]. The introduction of 1° establishes the so-called

adaptive kernel bandwidth (Abramson 1982), aimed at improving the approximation at
the tails of the distribution by adaptively changing the bandwidth, which is selected

larger for the regions with lower values of the probability density. This factor is given by

T

N, 1/N, )
A = {{Hk(w;)} /k(W;)} =(e') . (3.11)
k=1
where 0 <7 <1 is a sensitivity factor, and @’ is defined as
N, /N,
o' {Hk(w;)} [ k(W)), (3.12)
k=1

and is calculated using the fix-bandwidth kernel approximation (referenced as the pilot

estimate), established similarly to Eq. (3.10) but with A* =1,

k(W,) NLZ(H {%{K(—% t%m} (3.13)

It is generally acknowledged that the method is insensitive to the fine details of
the pilot estimate (Abramson 1982). This means that the preliminary selection for ¢ in
k(w,) has small impact on the final adaptive kernel (optimization of this bandwidth will

be discussed later). Among the different kernel choices, the popular Gaussian kernel is
employed in this investigation Eqg. (2.20) .
The optimal selection of the bandwidth parameter (for the fix-bandwidth kernel)

based on the AMISE, following the discussion in Section 2.4.1, is
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1
4 N+
M = o, (3.14)
N, (N, +2)
where o; is the standard deviation of the samples {W/},. This selection may be used to
formulate the pilot estimate to calculate the local bandwidth factor Eq.(3.11), but may

not be necessarily appropriate for k (W, |d) when utilized as IS density (see discussion

later). It also shows that o; corresponds to a proper normalization for,.

3.2.2.1 Optimal Proposal Densities

The vector dfor the kernel characteristics is composed of the sensitivity factor 7
and the bandwidth parameter ¢ for each component (or a version normalized by o),
leading to the definition: d=[r ¢, /0, ; i=1,---,n,]. Since the goal here is to use the

established distribution as the IS density, this vector d should be selected to optimize

the expected coefficient of variation (Ang 1992), or equivalently

Eﬂ [(h(x,,0)7 (W, |d))*], referenced henceforth as objective target for the IS density
optimization, where fk and 7, correspond to the new proposal density and IS quotient

respectively. Both of them are defined based on k&, (W, |d). Note that in the study by

Ang et al. (Ang 1992), its application within optimization algorithms was not considered.

Adoption of the approach advocated in Ang’s study requires knowledge of A(x,,0) for

{0’ },, something that does not hold for the implementation proposed in this

investigation since the kernels are based on samples obtained over multiple iterations
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(it is only true for the subset {0}, ). Thus, a different approximation is proposed

hereafter relying on the following transformation:
~ o~ 2 ~ o~ 2 =
E, | (hx 007w, ) | = [ (h(x,, 007 (W, | @) 7,(0)d0

=I®h(xk’0)2 p(wk) ( p(wk) ]}{(B)Jde

k (W, [d)\ k, (W, |d)

_ 2 P(W,)
= j@ h(x,,0) TS p(0)d0 (3.15)

. W CANPNAUY
=] 0 PO )

= 2_P(Wy)
_ J’@h(xk,ﬂ) Lov, 1) 1 (W,) f,(0)do.

The last expression may then be approximated through stochastic simulation using the

readily available performance evaluations for sample set {Gj}k [which is distributed

according to £, (0)] as

J p(Wk)
£ [ 0mv)) = ;hm,e Drov EO (3.16)

This then leads to an optimization problem for selection of vector d,

d —argmlnE_ [(h(xk,ﬂ)i;k(\TV”d))zJ, (3.17)

dER(\ +1)+

which may be solved by any standard algorithm. Note that the evaluation of the target
function in this problem simply requires estimation of {k, (W] |d)} for the new values of

vector d, something that involves minimal computational burden. As such, obtaining a

local optimum for Eq. (3.17) is a straightforward numerical optimization task. Since Eq.

(3.16) involves k,(W{|d) in the denominator and some elements of sets {W/}, and
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{w, }, are the same (i.e., points where kernel density is estimated are identical to points
used to establish these densities), ill-posed problems may arise in the optimization

because at these points & (W/) — o when ¢, — 0, leading to zero contribution in the

approximation for E;; [(h(x,,0)7 (W, |d))*]. This should be attributed to the fact that

the samples used to estimate E/;k[(h(xk,ﬂ)ﬁ{(wk |d))’] through stochastic simulation

have correlation to the samples utilized to form the kernel density. The remedy here, as
in (Ang 1992), is to substitute k (W, |d) with k_,(W]|d), which corresponds to the
kernel estimate using all kernels {Ww;}, except for the samples that correspond to v~v£ , if
such samples exists (this automatically circumvents the correlation problem). It is then
straightforward to prove that k(W] |d) >k, (W] |d) for N, large enough (Ang 1992);
as such this remedy does not influence the accuracy of the approximation in Eq. (3.17).

Once selection of d° has been established, the corresponding expected

coefficient of variation may be obtained by

5o B [ECAN 518

\/N7k ]:I(Xk )’

It is generally expected that this approximation will underestimate the value for

the coefficient of variation. This should be attributed to the fact than the approximation

in  Eq. (3.16) (obtained through stochastic simulation) is wused for

Eﬂ[(h(xk,ﬂ)fk(vvk |d))’] and that d has been explicitly optimized to minimize this

approximation. This will contribute to exploiting any vulnerabilities of the approximation
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to produce an estimated value lower than the true one. In other words, the optimization

will create a bias, which will be bigger for smaller values of N, (and will in general

approach zero if N, is sufficiently large).

3.2.2.2 Robust Proposal Densities Selection

The previously described bias in the estimation when optimizing Eq. (3.17) can
lead to erroneous solutions, especially when the number of available samples is low (so
decisions are made without sufficient information). To circumvent this challenge, a
robust optimization for d° is established, motivated by the generalized RDO

formulation; a weighed combination of the mean and standard deviation of

(h(xk,())Fk(vak))2 is considered. This leads then to the target function

= A=, [(hx 07 ) [V, [ (hx, 073,

:Eﬂ[(h(xkaﬂ)a(wk))z} (= w)+w £, [(h(xkaﬂ)é(wk))4l_l | (3.19)
E, | (7 007,(8,)’ |

where w is the relative weight parameter that controls the degree of robustness. In this

expression, Eﬂ[(h(xk,O)Fk(v”vk |d))’] may be approximated through Eq. (3.16) and an

approximation for Eﬁ [(h(x,,0)7 (W, |d))*] may be similarly established as

J (W)
[(h(xk,ﬁ)rk(wk|d) } 0 /Z;h(xk,ﬂk) rk(wk)k3 Ty (3.20)
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3.2.3 Global Sensitivity Analysis and Selection of Model Parameters for Adaptive IS
Densities

The remaining question is the selection of the exact model parameters
corresponding to the vector w,. The probabilistic sensitivity analysis described in
Section 2.4.4 is employed for this purpose. Recall that this analysis can identify the

importance of each of the uncertain model parameters 6. to the overall probabilistic

performance and can be efficiently performed in the context of the proposed adaptive
IS implementation using readily available information. It is established by comparing the

marginal distributions of the prior distribution p(6,)and the auxiliary density 7(6, |x,),

where the latter is approximated through a fix-bandwidth KDE utilizing samples {0’ },,

#(0,1x,) =NLZ(%{K (@]D (3.21)

with ¢, =1.06:N,"°c, and o, corresponding to the standard deviation of the samples

leading to

{6°},. Note that this time, the goal is to approximate the values for 7(6|Xx,);

therefore, the choice of the bandwidth that minimizes the integrated square error is
appropriate. In addition, implementation of an adaptive kernel for this case would
necessarily increase the computational complexity (since a new pilot-estimate would be
required for each individual model parameter), whereas use of fixed-bandwidth kernels
has been proven accurate for this type of application (Jia and Taflanidis 2011). As such,

the fixed-bandwidth kernel is preferred for the entropy evaluation. The relative
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information entropy D(7z(6,|x,)|| p(6,)) can be approximated through the numerical

integration of Eq. (2.24). Parameters with higher values for this entropy will have higher
importance to the probabilistic performance (Jia and Taflanidis 2011), and formulation
of IS densities should focus on them. Although this approach provides a relative
prioritization of the different model parameters, a remaining question is how many

model parameters should be included in the set w,? To answer this question, the

anticipated coefficient of variation Eq. (3.18) is used through the following approach:

1. The model parameters are first ordered based on their respective values for D(.)
[ranked in decreasing importance from high to low values for D(.)]. Based on some

threshold D

min ?

the maximum number of model parameters n___ for which IS will be

max

considered is then defined. Parameters having entropy D(.) lower than D, are

disqualified as potential candidates for the IS formulation.

2. For different values of mupto n,, ,i.e. m=1L---,n,_, define W, to consist of the m

most influential components of 0; then perform optimization in Eq. (3.17) and
calculate the optimal value of the objective target, meaning the second moment Eq.
(3.16) or if the robust approach is adopted, the expression in Eq. (3.19).
3. Select as m the number of model parameters that yields the smallest value for the
objective target.
This procedure allows for an adaptive selection of the number of parameters
considered for the IS density formulation to yield the highest expected accuracy. The

motivation for introducing D, is to reduce the computational burden [requirement to

mn
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perform optimization Eq. (3.17)] since for parameters of low importance, we do not

anticipate benefits from establishing IS densities. D, may be adaptively selected based

n

on the highest entropy value among all parameters and some pre-defined allowable

percentage reduction s, <1,
D,,, =s,max[ D(x(6,|x,) | p(6))] (3.22)

Through this definition, the selection is always normalized with respect to the

importance of the most influential parameter.

3.3 Optimization under Uncertainty with Adaptive IS

3.3.1 Consideration for Implementation across Iterations

In the proposed scheme, the adaptive IS density formulation is integrated across
the iterations of the optimization algorithm. At iterationk, corresponding to system
configuration X,, the evaluations of the system performance function 4(x,,0) are
utilized to formulate the IS densities that will be adopted for iteration k+1,
corresponding to system configuration Xx,,,, with the sample set {0’ }, used to
develop the densities including samples that have been obtained in the last few
iterations (not just in iteration k). If the systems configuration corresponding to x, and
X,,, are not drastically different, where different should be interpreted as leading to
different performance functions for the same model parameter values, these IS

densities for X, are expected to be efficient for x,,, as well. This is the motivation for

57

www.manaraa.com



adopting an algorithm that relies on local searches for solving the optimization
problems, since the design configurations in subsequent iterations of these algorithms
are similar, especially as the algorithm approaches local minima (when the steps in the
design space are in general small). At initial iterations of the algorithm, the efficiency of
the IS implementation by sharing information across iterations might be smaller since

the step sizes in the design space can be large, leading to a large difference between x,
and X, . But this is of small concerns since (i) the values of the objective function are

also larger, so the coefficient of variation is expected to be low, reducing the need for
adopting IS (smaller problems in accuracy), and (ii) obtaining high accuracy estimates is
more important closer to a local optimum, where convergence/stopping criteria are
utilized. Note that an alternative implementation can consider updating the IS density
only every few iterations (rather than at every single iteration) when the algorithm has
nearly converged (small steps in design space) in order to reduce the overall burden for
identifying the optimal IS density, namely the optimization described by Eq. (3.17). Since
the proposed adaptive IS formulation has small cost, this should not be considered a
burden for most applications.

This discussion provides also guidelines for selection of the number of samples in

the set used to inform the KDE-based proposal density formulation {0’ },. During the

initial iterations (when steps within the design space are large) samples from only the
immediate iteration (or from not more than a few iterations back) should be utilized.

When a local minimum is approached, samples from multiple iterations can be retained
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since use of larger N_ better informs the IS densities. All these samples are expected to
provide valuable information for the current iteration, as they correspond to design
configurations similar to the one in the current iteration.

A final question that needs to be addressed is how the improvement in accuracy
established through the IS density implementation can be utilized within the
optimization algorithm. There are two approaches. The first one is to rely simply on the
fact that the improved accuracy will contribute to greater robustness characteristics and
faster convergence for the optimization algorithm itself, thus utilizing the benefits in an
indirect way. The second one, advocated here, is to directly choose the number of

samples needed N, in order to establish a specific coefficient of variation J,,,,,, based

on the estimate for the coefficient of variation from the current iteration, given by Eq.

(3.5). If N, samples were used in the current iteration and a coefficient of variation o,

was established, then assuming similar efficiency between subsequent IS densities, the

required number of samples to attain the required o, , corresponds to

2
N,quNk[ % } (3.23)

0,

thresh

Note that an alternative approach would have been to use the anticipated coefficient of
variation 5,{ in Eq. (3.18) based on the new proposed IS density and not the one used at
the beginning of the iteration, which may be significantly different than the new one

obtained through use of this new IS density. As discussed earlier, Sk will always

underestimate the true coefficient of variation; as such, a selection based on &, is more
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appropriate. As the algorithm converges to the optimal solution and design changes
established between different iterations are small, it is expected that J, will provide a
good estimate for the coefficient of variation even under the new proposed IS density
(i.e. 5k =0,). Thus, this simplification is expected to have a small impact on the

resultant optimal selection for the number of samples. An erroneous estimate may be
obtained, though, by this selection when the IS densities in the current iteration do not

properly cover the entire ® space that is of importance to the integrand. This could
lead to large values for the expression A(x,,0/)r,(w]) for some samples (belonging in
the aforementioned region) and ultimately to large values for 6, . These samples will be
included, though, as kernels in subsequent iterations [since they correspond to the
highest values for h(x,,0/)r,(w])], and these problematic regions will be ultimately
well represented by future IS densities. This means that due to the influence stemming
from these samples (if and when they exist), the current estimate for o, does not

represent well the estimated coefficient of variation for the following iterations,
creating an artificially high requirement for the number of samples to attain the desired

accuracy O, Thus, a detection of such outlier samples is introduced before

thresh *

estimating 0, though Eq. (3.23). This is established by neglecting all samples for which
h(Xk,ei)”k (W/i) _]:I(Xk | {ej}k) > 8,005 (3.24)
where o, is the standard deviation of A(x,,0/)r,(W]), estimated through all available

samples, and s, is an outlier detection scaling (generally larger than 6). Note that this
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outlier detection impacts only the estimation for 6, used to update N, through Eq.

(3.23) and does not impact any other aspects of the algorithm.

It should be finally noted that instead of using a specific threshold J,.,, an

adaptive selection can be adopted using smaller values as the optimum design is
approached (Polak 2008). Since the focus here is to investigate the advantages of the
proposed adaptive formulation of IS densities, this latter choice is avoided because it

adds another level of complexity in the comparisons.

3.3.2 Algorithm for Adaptive IS Implementation
When combining the previous ideas, one can formulate the following
optimization algorithm utilizing adaptive IS. Define first the bounded design space X, as

well as the characteristics of the SPSA algorithm (or for any other algorithm used), and

select the initial point X, and the number of initial samples N, for the stochastic
simulation. Choose the minimum number of samples obtained per iteration N, and
factor s, for the stochastic sampling, the number of total samples for the density
approximation N (or if this changes across iterations, the adaptive rules for choosing
it), the percentage reduction s, for the definition of minimum importance based on the

entropy evaluation, the desired accuracy o

s TOr selection of N, , the outlier scaling

factor s, and the objective target for the selection of optimal density characteristics, i.e.

E?;. [h(x,,0)7 (W,))’] or its robust expression in Eq. (3.19). In the latter case, choose also
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the robustness factor w. . A general flow diagram of the adaptive IS algorithm can be

observed in Figure 3.2.

~Generate N, samples | PR
TN A 1
Select Ny, ) {07} ~1(0)=q, (W )p(y,| W) =—— Start !
so that c.o.v l [/1(0)=p(8) in 1*iteration]} """ 77
satisfies R Tiubsiat=iiaieiel it N B v 2
. Estimate H(x,) . BRS i\ p(@)
constraint L @) ! (Evaluate ) (*) N, Z:‘ h(x,,07) 7.
= 2O T (x, 8) ) O e =
Calculate ) | N5 = . 1,(®); e _I’_ LED RN/ H(x,)
c.0.v 9, } ]
based on Foo Tt i
value N, Il Design Update ' [ Obtain samples from 7(0|x,) ]
I __________ / ‘ l
Find outlier | No _--~ }‘ el Augment new Approximate 7(6,|x,) through
samples and <—<:\Converged’?, >+ || samples with old to| | samples and calculate entropy
remove them TN~ ye” use as Kernels for || D(z(8;|x,)||p(6;)). Order 6,
\ ) .. Lo
_ _1 _\Ees IS densities based on relative importance
1 hY
I_ _SEO_p_ ; S B *‘ ''''''''''' '*' ''''''''''''''' = .
Select m with smallest target | !( Consider Kernel-based IS for m Repeat m=1,.. nas
value. Respective parameters [ most important parameters. where n,,,. chosen .
. : : :
define w,,, and their Kernel [* Select Kernel bandwidth to based on cut-off |
density g,,,(W,.,) I\ _minimize chosen objective target / for entropy ;

\ .

Figure 3.2 Flow diagram for adaptive Importance Sampling (IS),
Components of diagram corresponding to approach without the IS
formulation are indicated with dotted lines.

At iteration k& of the numerical optimization algorithm [Eq. (3.1)], and assuming
updating of IS is established, perform the following steps:

e Step 1 (performance function evaluation): Obtain samples
{07}, =10":j=1.,N; for 0 from f.(8)=g,(w,)p@E,|w,) [with £(8) for

the first iteration corresponding to p(08)] and evaluate A(Xx, ickAip,B), which
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are required for SPSA, and the IS quotient in Eq. (3.2) for all of the samples. The

value of A(x,,0)can be obtained using Eq. (3.4).

Step 2 (optimizer): Apply the recursive formulas to determine the k£ +1 design,
for SPSA based on Eq. (A.1) and Eq. (A.2), calculate the objective function in Eq.
(3.3), and check the stopping criteria. If the stopping criteria have not been
satisfied, perform the following steps to select the future IS densities.

Step 3 (stochastic sampling): Calculate y, through Eq. (3.7), simulate N,

uniform random numbers {u’} and obtain samples {0°}, from z(0|x,)

through rejection sampling utilizing Eq. (3.8). If the number of samples obtained

is less than N

min ?

modify 7, in Eq. (3.8) so that X,

min

samples are obtained. This
can be established by selecting y, to correspond to the N, , largest value of
ratio| i(x,,0”) |7, (w])/u’.

Step 4 (augmentation of samples): Combine these samples {0“ }, with the
samples obtained from previous iterations to obtain kernel set {0’ }, . If the total
number of samples available is greater than N, , remove the oldest (meaning
from previous iterations) samples to obtain set {0’ },, consisting of exactly N,

samples.

Step 5 (identification of importance): Using samples {8’ }, calculate for each 6,

-1/5

the approximation 7(6,|x,) given by Eq. (3.21) with ¢ equal to 1.06:N, ~o,
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and o, corresponding to the standard deviation of the samples {6}, . Then use
this approximation to calculate the entropy through Eq.(2.24) .

Step 6 (definition of minimum importance): Select D, . based on Eq. (3.22) and

define n,,

X

as the number of model parameters that have values for entropy
higher than D, , .

Step 7 (selection of characteristics of IS): For different values of m up to n

max ?

m=1,---,n, ,define W, to consist of the m-most influential components of 0.
Establish a pilot estimate for k(w,) through Eq. (3.13) using for ¢ the estimate
in Eq. (3.14), and calculate @’ through Eq. (3.12). Then perform optimization in
Eqg. (3.17) utilizing the chosen target as the objective function, either the second

moment Ef; [A(x,,0)7 (W,))’] or the robust expression in Eq. (3.19), using the

estimate in Eq. (3.16) and, if required, the one in Eq. (3.20) (depending on the
target selection). Find the optimal characteristics d* but also keep in memory
the optimal target value established.

Step 8 (final selection of IS densities): Select as optimal index m for the IS
densities the one corresponding to the minimum value for the chosen target

function. Select the IS density for the next iteration as

fia@®=q,, (W, )pE,. |W,.), where w,, corresponds to the uncertain

paramters for that index m, §,,, are the remaining components of 6 (excluding
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W, ) and g,,(.) is the sample-based density (for index m) with projected

efficiency identified as optimal in the previous step.

e Step 9 (selection of number of samples): If adaptive selection for N, has been

chosen, perform first the outlier detection in Eq. (3.24), then calculate the

current coefficient of variation through Eq. (3.5) and finally set N,,, to the

minimum value N, required so that the coefficient of variation in this iteration

is less than &,

based on Eq. (3.23). Subsequently proceed to iterationk +1.

It is worth noting that this approach establishes an adaptive optimal selection for
the number of parameters to formulate IS densities as well as the characteristics of such
IS densities with the ultimate goal to minimize the anticipated coefficient of variation.
More importantly, efficient IS densities are established with small computational effort
since no new system evaluations are required. Thus, for problems with computationally
intensive numerical models (when the computational complexity should be considered
under the scope that the system model will need to be evaluated multiple times for

each objective function estimation), it is expected to contribute to a great reduction of

computational effort.

3.4 Case Study: Half-Car Suspension Model Driving on a Rough Road
The framework is illustrated next with an example considering the optimization
of the damper characteristics for the suspension of a half-car nonlinear model riding on

a rough road. Two design cases are considered, the first corresponding to a passive
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damper and the second to a semi-active damper with skyhook feedback law, which is a
common approach for implementing semi-active damping in vehicle suspension systems
(Rill 2011; Verros et al. 2005). For the semi-active case, the actuator dynamics are not
explicitly modeled in order to maintain a similar model between the two design cases
since the ultimate goal is to focus on the impact of the modeling uncertainty on the
design problem. Note that for all results reported herein, the optimal design
configuration is dependent upon the specific probability models and performance
qguantification chosen. Various studies exist that examine the implications of such
choices on the optimal design configuration and the degree of system robustness
attained in comparison to deterministic design approaches, either in a generalized
design setting (Doltsinis 2004; Beyer and Sendhoff 2007; Valdebenito and Schuéller
2010) or in the context of the specific application considered here (Taflanidis et al.
2010), i.e., controller optimization for systems under a stochastic excitation while
considering parametric modeling uncertainty. As discussed in Section 2.1, such
comparisons are out of the scope of the present study; the focus of this investigation is
on the computational efficiency established while attaining the optimal design (through

the adaptive IS formulation) given the specific probability and numerical models chosen.
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Figure 3.3: Schematics of the half-car suspension model with (a)
Passive, (b) Skyhook suspension

3.4.1 Description of Simulation and Probability Models

3.4.1.1 Half-Car Simulation Model

The half-car model assumed here is shown in Figure 3.3. The chassis is
represented as a rigid body connected to the tires at the ends by a combination of a
spring and a dashpot. Furthermore, the tires are connected to the ground by another
spring/dashpot combination. The numerical model is developed by using the small angle
assumption. In this context, let y_, Vi Vs and 6. denote the vertical displacements of
the chassis’ center of mass, the front and rear tire, and the angular displacement (pitch)
of the chassis, respectively. These correspond to the primary state variables for the

system. The vertical displacement of the front and rear suspensions are denoted by y,,

and y,., respectively, and are related to y.and 6, by
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Yy =Y. +0.(1-e)L/2,

3.25
V,=y.—0.(1+e)L/2, ( )

where e_€[0,1]is the eccentricity between the geometric center of the chassis and its
center of mass, while L is the distance between the two suspensions. Also let m, Sy,

m,. denote the masses for the chassis, the front and rear tires, respectively, and let 7,

denote the moment of inertia of the chassis. To simplify notation represent the location

of a given component by subscript o:={f,r} (either front or rear), with the tire spring
and dashpot forces denoted by F, , F, , and the suspension spring and dashpot forces

denoted by F

so? Fda .
The equations of motion for the coupled system are then

mc’j}c +F;f +Fdf +F;r +Fdr :mcg’
mtrj}tr _F.;r _Fdr + F;r +F = mtrg’

hr

. 3.26
My V= Fy —Fy +Fp + Fyp=m,g, (3.26)

18, +(F, +F,)(1—e)L/2—(F,+F,)(1+e)L/2=0,

where g denotes gravity acceleration. Linear characteristics are assumed here for the

tire spring forces and nonlinear characteristics for the suspension ones (Verros et al.

2005; Szaszi et al. 2002).

F;o = Kul(ysa - yto)+Kan(ys0 - yta)3’

(3.27)
F;o = Kto(yt() - MO),

. . . 1
where u, is the vertical elevation of the road surface above a reference level, K, and

K] are the linear and nonlinear stiffness coefficients of the suspension spring,
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respectively, and K, is the linear stiffness coefficient of the tire. The nonlinear part of

the suspension spring is aimed to capture spring hardening effects (Szaszi et al. 2002).

The tire dashpot force can be expressed as a function of the damping coefficient C

to?

and the velocity of the road surface input u_,
P;lo :Cto(.)./to _Z:lo)‘ (3.28)
The suspension’s damper force when acting passively is modeled as

Fda = Cal(ysa _yto) - Can

j}sa _j}to s (329)
where Ci and C are the damping coefficients for the linear and nonlinear component
of the force, respectively. The nonlinear part of the force captures the increased stroke

reaction when the suspension is moving downward and is taken as 40% of its linear

counterpart based on the suggestions in (Verros et al. 2005; Szaszi et al. 2002), i.e.

C" =0.4C’ . The design variables for the passive case are thus

x=[C, C]. (3.30)
When considered as a semi-active suspension with an idealized skyhook
implementation the damper, the damper force F,, is modeled as
Fi =Gy =Gy (3.31)
The design variables for the skyhook case correspond to
x=[C, C C CT. (3.32)
Details on the technical realization of the skyhook semi-active force may be found in

(Rill 2011), and as stressed earlier, an idealized implementation is assumed in this
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example (actuator dynamics not considered). Note that alternative skyhook

implementations could have been also formalized (Verros et al. 2005).

3.4.1.2 Excitation (Rough Road) Modeling and Response Evaluation

The road surface input u, is modeled as a zero-mean Gaussian stationary
stochastic process with Power Spectral Density S(€2) given by (Verros et al. 2005;

Robson 1979)

Q)" 2, if Q<Q,
SQ)=x|—| ,w= , , (3.33)
Q 1.5 if Q>Q,

where Q corresponds to the wavenumber (in cycles/m) and Q_ =1/2x is the critical
wavenumber. Parameter k. corresponds to the roughness coefficient, whose value is
defined by the International Standard Organization (ISO). A time-domain realization for

u, and u, may be obtained by using the spectral representation method assuming that

the car drives with a constant horizontal velocity v, . This leads to the expressions

N
u,(t) = Y \2S(nAQ)AQ sin(nAQ vt + ¢, +5),
n=1

N
1, (1) = Y nAQ- v, 28(nAQ)AQ cos(nAQ- vt + @, +5),

n=l1

(3.34)

where AQ=27/L_, with L being the total length of road considered, taken here as
5km, ¢, are independent random variables following a uniform distribution in the

interval [0,27) and s =0 for front tire, while s =L/ v, for the rear tire.
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A numerical model for the system of Egs. (3.26) is developed in SIMULINK (Klee
2007), and finally the response statistics for any quantity of interest under the random
road excitation (and assuming the drive is long enough for the vehicle response to reach
stationary conditions) are obtained through the simulation results. For instance, the

standard deviation o, for some zero mean response quantity z, is equivalent to the

root mean square value RMSZi , which can be obtained by

—RMS. = | " 22(0)dr 335
O-z,'_ Zi_ ?IO Zi() b (' )

where T=L /v,.

3.4.1.3 Probability Models Selection
With respect to the model parameters, all model characteristics apart from the

design variables are treated as uncertain, leading to the definition of 0 as

I, v, C, K, C, K, K, K, K K e

0=[m,_ m, m, I v, . K |- (336)

The probability models are selected as follows. Independent lognormal distributions are

assumed for m_, my, m and [ with median values 580kg, 40kg, 40kg and

tr
1100kgm”, respectively, and coefficients of variation of 20%. Velocity v, is also

assumed to follow a lognormal distribution with median 60km /h and coefficient of

variation 20%, whereas the eccentricity e_ is assumed to follow a uniform distribution in
interval[0.2,0.8]. The road roughness «; is assumed to follow a lognormal distribution

with median 6410°m* /cycle/ m (corresponding to average road based on ISO
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standards) and coefficient of variation 10% . The linear and nonlinear components of
the suspension springs [Kf) K!'] for a particular location are assumed to follow a

correlated lognormal distribution with correlation coefficient 40% . These distributions

are independent for the front and rear of the car, but with common characteristics,
median 23.5kN for K! and 335kN for K" and coefficient of variation 20% . Similarly,

the tire stiffness and damping distributions are assumed as independent lognormal

distributions that have common characteristics; the median for C, is 20 Ns/mand for

K. is190kN, with coefficient of variation 20% for each. All the aforementioned

0
median values for the car model are based on the ones used in (Szaszi et al. 2002). A
summary of the probability models employed in this problem can be seen in Table 3.2.
For the nominal vehicle model (i.e. a deterministic model with model parameters
equal to the median values of the uncertain PDFs), the natural frequencies of the
linearized system (ignoring the nonlinear suspension force) are calculated as [1.011
1.636 11.633 11.642 Hz]. Also, the ratio of RMS values of the nonlinear to linear
components of the suspension spring forces for the vehicle with passive dampers with
damping coefficients equal to 600 Ns/m is estimated as 22%, indicating that the
vehicle exhibits significant nonlinear behavior. Thus, estimation of its response statistics
would be impractical with any other approach, apart from the simulation-based setting
discussed here. The computational burden for one simulation, that is one evaluation of
the response, is on average 1.5s on a 3 GHz Xeon CPU (care was taken to establish a

model that balances between numerical accuracy and efficiency).
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TABLE 3.2

SUMMARY OF PROBABILITY MODELS FOR THE HALF-CAR SUSPENSION PROBLEM.

lognormal

lognormal m, \Lognormal 2
m. | = _ et _ K. | 1 =64e-6 m/cycle/m,
¢ | u=580 kg cv=20% =40 kg cv=20% !
H g ° m, |H g ° v=10%
Corr. Lognormal Corr. Lognormal Cy lognormal

K'|u for K 23.5kN/m | k'|u for K! 23.5kN/m | C,|#=20Ns/m, cv=20%
K|u for K 435kN/m* |K”|u for K! 435kN/m’ | K

+|Lognormal

cv=20% , p=40% cv=20%, p=40% K, |#=190 KN/m, cv=20%
lognormal Uniform i Lognormal
nirorm m - P
Ye | 1=60 km/h, cv=20% | % 0.1, 0.4] I, | =1100 kg m’,
cv=20%

In this table 1 corresponds to median, CVv to coefficient of variation and p to correlation
coefficient

3.4.1.4 Probabilistic Performance Quantification

The performance measure A(x,0) is selected as the normalized linear
combination of the fragilities related to the root mean square of the vertical
acceleration at the center of mass (RMS; ) , which in turn is a measure of passenger
comfort (Dahlberg 1979; Baumal et al. 1998), and of the root mean square of the

suspension’s damping forces at the rear and front of the car (RMSF” and RMSFM_
respectively) — a measure of suspension fatigue. Thus, the response vector is

RMS}’Y
z(x,0) = RMSFd/ , (3.37)
RMS,.

73

www.manaraa.com



and the performance function is

o

3 —
h(x.0) = %2}1) {M} (3.38)
i=1 &
where ®@[.]corresponds to the standard Gaussian Cumulative Distribution Function

(CDF), b, is the threshold related to each response quantity of interest, taken here as

1.0m/s* for the acceleration, 240 N for the dampers in the passive suspension and
160N in the skyhook suspension (more sensitive implementation for semi-active

actuators, leading to lower threshold selection), and o, is the coefficient of variation for
the fragilities, assumed as 5% for all of them. Note that when o, tends to a value of

zero, the above CDF approaches the indicator function which is one if z, exceeds b, and

zero otherwise. Ultimately the introduction of the fragilities through the CDF can be
equivalently viewed as addressing unmodeled uncertainties (Taflanidis and Beck 2010):
rather than having a binary distinction of the performance, i.e. perform acceptably
when the response is smaller than threshold 5, and unacceptably when not, as in the
case of the indicator function, the lognormal fragility introduces a preference for the

response between the two extreme cases [0 or 1], with o, defining the smoothness of
that transition. This can be equivalently considered as the threshold corresponding to an
uncertain quantity b.&; (because we cannot specify exactly when the response is

unacceptable) or the model response having a prediction error over the real system
response z¢&; (this case will be further discussed in Chapter 5), with &; having (for both

aforementioned cases) a lognormal distribution with median equal to one and
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logarithmic standard deviation o, . This then leads to the failure probability (fragility for

each response quantity)

Plz,>be)=Ple <z /b]=Plln(g)<In(z,)-In(b,)] = q{ :l, (3.39)

where the last equality is based on the fact that under the stated assumptions, In(g,,)
follows a Gaussian distribution (which is a symmetric distribution) with zero mean and
standard deviation equal to o, . The last fragility is the one ultimately appearing in Eq.
(3.38), whereas the initial definition for this formulation is further exploited in Chapter 4

(in the case study considered there).

Finally, the objective function H(x) is the average failure probability over the

three different response quantities RMS; , RMS, and RMS, , and is constrained

within the [0,1] range.

3.4.1.5 Complexity of the Adopted Models and of the Resultant Optimization Problem
To properly evaluate the degree of complexity of the adopted numerical model,
a comparison to similar design problems discussed in the literature needs to be
considered. Traditionally, vehicle suspension design has predominantly dealt with
randomness only due the stochastic disturbance, i.e. the rough road (Sharp and Crolla
1987; Rakheja et al. 1994; Tamboli 1999), with many of the studies adopting a linear (or
linearized) model and only a small subset of authors (Szaszi et al. 2002; Su et al. 1991)

incorporating nonlinear elements. In the case of linear systems, existing approaches
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tend to favor frequency-domain analysis for evaluating the performance of the system,
something that is no longer feasible when nonlinearities are introduced. Few studies
have incorporated probabilistic uncertainties in the model parameter description, but all
of them focused on analysis and not on design (Gao et al. 2007; Gao et al. 2008). This
discussion makes evident that the current model, which incorporates a large number of
nonlinear components and relies on time-domain numerical simulation to evaluate the
system performance while addressing parametric probabilistic uncertainties in the
design problem formulation (not just due to the stochastic characteristics of the rough
road), should be considered of significant complexity when compared against the

relevant studies in field.

3.4.2 Optimization Details

The passive design case, also referenced herein as D,, has a design domain with
upper bounds of [1000 1000]Ns/m and lower bounds [0 O]Ns/m. For the semi-
active case, also referenced herein as D,, the upper bounds are defined as
[450 3500 450 3500]Ns/m, and the lower bounds as [0 0 O O]Ns/m. The

difference in upper bounds for the damping coefficients stems from the fact that the
tire mass is smaller than the mass of the chassis; thus, the skyhook damper is expected
to have a more significant effect on it. For both problems, the search domain is
transformed into the respective normalized space for the design variables (the

normalized design variables vary between [0 1] within the chosen design domain).
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For SPSA, common values suggested in the literature are considered since the
focus here is not to evaluate the efficiency of SPSA but rather focus on the adaptive IS

implementation. B°" is selected as 0.602, ¢* as 0.101, and 4* as 5% of the
maximum allowed iterations, taken here as 200. The parameter ¢* is chosen as

0.0002 in the normalized space, and a® is selected so that the maximum step of the

first iteration in any direction in the design space is 10% of the domain. The starting

point for design problem D, (passive) is set as x, =[200 200]" and for design problem

D, (skyhook) is x, =[50 450 50 450]" . These design choices ultimately correspond
to small dampers and are expected to contribute to high values for the objective
function (limited vibration suppression). Due to its importance for selecting step sizes,

the gradient in the first iteration g, [Eq. (A.1)] is averaged over six different trials

(corresponding to different random samples for the model parameters and Aip defining

the perturbation direction). A blocking rule is implemented such that a step size larger
than 10% of the search domain is allowed.

Convergence of the algorithm is determined through the infinity norm

||xk+1 - X, ||oo :mlax| X, 1.1 — X, |, with convergence criteria satisfied if this norm does not

exceed 0.04% for passive and 0.08% for skyhook of the search space in at least 4
subsequent iterations. Two additional stopping criteria are set; the total number of
iterations is set to 200 [meaning 400 evaluations of the probabilistic integral given by
Eq. (2.1)] and the total number of allowed simulations (calls to the system model) is

defined as 500,000. The total number of allowable simulations was chosen to
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correspond to roughly 48 2 of simulation-time in a double-quad 3 GHz Xeon
workstation (utilizing parallel simulations in all eight cores simultaneously),
corresponding to a time-intensive operation.

For the IS implementation, N, is taken as 150, while the minimum number of

samples required per iteration N

min

is 50. The factor Sy for the stochastic sampling is
set to 1.1, the number of total samples for the density approximation N, to 200, the
percentage reduction s, for definition of minimum importance to 5%, and the outlier

scaling factor to 8 (note that rarely were outliers detected). For the threshold ¢,,,,,

used to select N,, the primary value considered is 10%, but results for two other

values are presented, 5% and 20%. The value of 10% is a common choice for
stochastic optimization applications implementing interior sampling; 5% would have
been a choice more appropriate for exterior sampling implementation, whereas 20% is
generally considered to correspond to high variability of the estimates that can lead to
problems within the numerical optimization. The second moment is primarily used as
the objective target for the IS selection, but results are also presented for the robust

target function of Eq. (3.19), with parameter w_ selected as 3/4. This is equivalent to

the standard deviation weighted three times higher in the objective target selection.
Apart from the fully adaptive IS implementation (i.e. adaptively selecting the

optimum kernel characteristics as well as the optimum number of model parameters for

which IS should be performed), two additional cases are considered: optimization

considering IS for all dimensions in 0 (the characteristics of the bandwidth are still
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adaptively chosen based on the proposed scheme) and optimization without
implementing IS. These three cases are denoted, respectively, as AIS (adaptive IS
implementation), FIS (IS implementation for full vector 0), and MCS (Monte Carlo
Simulation). The efficiency of the proposed IS scheme (AIS) is evaluated against these
latter two. Comparison against MCS illustrates the efficiency of the adaptive IS
formulation itself, established by sharing information across the iterations of the
optimization algorithm, whereas comparison against FIS illustrates the advantages of
the adaptive selection of the number of model parameters for IS through integration of
global sensitivity analysis tools. The efficiency is evaluated through two different
criteria: a) the number of system simulations required to obtain satisfactory accuracy
for the objective function estimate and b) the number of system simulations required to
converge to the optimal solution. A fourth case with robust selection of IS densities is
also considered, which is denoted as AISR.

To facilitate more consistent comparisons between these different approaches
for performing stochastic simulation, the aforementioned two types of convergence are
distinguished and separately discussed herein: reaching the maximum number of 200

iterations or 500,000 system model evaluations (or equivalently 304r of computer
time) are referenced as reaching stopping criteria (hard convergence), whereas

satisfaction of the convergence for ||Xk+l —xk”m is referenced as reaching convergence

criteria. Since the latter is ultimately a user-defined selection, in other words choosing

different convergence thresholds would lead to different results, many of the
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discussions focus on the hard convergence behavior of the cases compared. This allows
for a comparison of the proposed IS scheme independent of the characteristics chosen
for the SPSA algorithm. It should be stressed, additionally, that no special attention was
given to tuning these characteristics; rather common values were used based on
literature suggestions. This means that these results should not be directly used to
assess the efficiency of the SPSA algorithm itself.

To judge the quality of the obtained solutions, the optimization problem was
solved using exterior sampling with a very large number of samples (N =20,000 for
both design problems) and appropriate proposal densities to establish a small
coefficient of variation around the optimal solution (less than 2%). The proposal
densities were selected different for each design problem, meaning the passive and
skyhook implementations. This selection is justified later. The results of this
optimization provide a benchmark solution for comparing to the results obtained from
the SPSA application. An efficient algorithm (based on metamodeling concepts) for
costly global optimization problems was selected since the choice for a very large N
imposes a significant computational cost for calculating the objective function. This
algorithm was implemented through the powerful TOMLAB optimization toolbox

(Holmstrom et al. 2006). The optimal solution for the passive case was found to be
x" =[713 606] Ns/m with respective performance I:I(x*)=0.0104 (1.4%), whereas
for skyhook, it is x" =[186 1651 197 1512]Ns/m with respective performance

F[(x*)=0.00066 (6.6%) . It is immediately evident that the skyhook implementation

80

www.manaraa.com



provides, as expected, a higher level of vibration-suppression as the performance
objective retains a significantly lower optimal value. This means that the computational
challenges for calculating the probabilistic performance (at least in regions closer to the
optimum) are expected in this case to be significantly higher since the objective
corresponds ultimately to a fairly rare event. This also means that the optimal IS density
characteristics for the two design problems around the optimal solution are very
different (different sensitivity with respect to 0 ), which is the reason why the proposal
densities were chosen differently for each problem when implementing the exterior

sampling solution.

3.4.3 Results and Discussion
To facilitate the discussions in this section, the following notations are used
e N :Total number of model evaluations until convergence criteria are satisfied.

e N :Total number of model evaluations until stopping criteria (maximum

allowable iterations) are satisfied.

e N/ :Total number of model evaluations up to the k™ iteration of the algorithm.

° [:I(X) : Estimate of objective function for x using random samples.

o I:[(x| {0°}) : Estimate of objective function for x using a specific set of samples
{0°} (see also the discussion in next paragraph for the formal definition of {0} ).

° n,’f : Number of dimensions for which IS is adaptively formulated at iterationk .
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The first three are related to computational effort for evaluating the efficiency of
the different algorithms. Table 3.3 shows results for a sample run of the optimization
algorithm for all cases (AIS, AISR, FIS, MCS) and target thresholds (5%, 10%, 20% ) for
the two design problems discussed (passive, skyhook). The optimum converged
solutions X', their respective performance I:[(x*), and the computational effort are

reported. The performance is evaluated employing a large number of samples to obtain
a small coefficient of variation (close to 2% for all cases reported). CRN are used across
all comparisons for each design problem (but different for the skyhook and passive

applications for the reasons discussed earlier) to enable a consistent comparison. This

sample set is denoted {0°}, and the respective evaluation for H(x) when this set is

employed is denoted as ﬁ(x| {0°}). The computational effort in Table 3.3 is reported
with respect to both the number of system simulations required for converging to the
optimal solution N as well as the number of simulations needed to reach the

stopping criteria of the algorithm N*" .
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TABLE 3.3

RESULTS FOR A SAMPLE RUN OF THE OPTIMIZATION ALGORITHM.

AlS AISR FIS MCS
Oyresn|  ReSUILS Passive | Skyhook| Passive |Skyhook | Passive |Skyhook | Passive [Skyhook
(D)) | (D) | (D) | (Dy) | (D) | (Dy) | (D) | (D)
180 182 185 164
X" (Ns/m) 709 1627 708 1606 718 1555 710 1466
s/m
196 194 200 179
59, 566 1459 S78 1483 370 1195 >42 999
0 2 * x
H(x |{0°})| 0.0105 | 0.00066| 0.0104 {0.00066 | 0.0105 [0.00074 | 0.0108 |0.00130
N 224.662|366,662 | 278,464 (429,248 | n/c’ n/c’ n/c’ n/c*
N™ 407,866 | 500,000 | 450,828 (500,000 | 500,000(500,000 | 500,000|500,000
182 175 179 181
X" (Ns/m) 709 1588 703 1645 702 1630 686 1459
S/m 205 190 210 209
10% S74 1390 567 1495 >68 1270 >16 1146
0 ~ *
H(x |{0°})| 0.0105 | 0.00068| 0.0105 {0.00065 | 0.0105 {0.00069 | 0.0115 |0.00078
N™* 60,256 | 99,150 | 46,036 |150,466 | 162,710|250,594 | n/c’ n/c’
N™ 114,038 249,352 | 114,958 (247,238 | 370,362|500,000 | 500,000|500,000
186 174 178 180
X' (Ns/m) 714 1517 705 1622 7 1622 719 1652
s/m
202 194 195 194
20% 372 1514 599 1509 562 1381 376 1479
0l A~ *
H(x |{06°})| 0.0104 |0.00070| 0.0103 {0.00067 | 0.0106 [0.00069 | 0.0104 |0.00066
N™* 38,000 | 69,144 | 33,784 | 45,948 | 95,306 | 92,664 | 73,324 | n/c’
N™ 57,142 | 94,654 | 46,880 | 86,630 | 138,434|228,922 | 155,040|500,000

*n/c stands for no-convergence, meaning that stopping criteria was reached. In this case the
optimal solution reported is the one at the last iteration. Optimum design, corresponding
probability of failure and computational effort are reported

Various trends are evident from Table 3.3, and many of them are discussed in

more detail later (after results from multiple runs of the optimization algorithm are

additionally presented); as expected, decreasing the threshold
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increases the computational effort (N™) since there is an inverse proportional

relationship for the required N, to achieve ¢, ., , and it also impacts the convergence (
N™*). The computational challenges are significantly higher for the D, design case

(skyhook) since it corresponds to a design problem with significantly lower value for the
objective function (average failure probability). It is interesting to note that for the FIS

and MCS cases and for small o the total number of evaluations is exceeded before

thresh ?
the 200 iterations are reached or the convergence criteria are satisfied. This is never
true for AIS and AISR which show great computational savings over both MCS and FIS.
This is a first strong indication of the efficiency of the adaptive IS scheme, especially of
the selection of the optimal number of dimensions; AIS and AISR outperform FIS by a
significant margin in terms of computational efficiency, whereas when FIS faces
robustness problems over MCS (for example D, design case for o, ., =20% - this

trend will be explored further later), both AIS and AISR still perform with improved

levels of efficiency. With respect to optimal solution X~ and the respective performance,
all cases examined (at least when convergence has been reached before stopping
criteria are enforced) tend to achieve similar performance to the one established
through the exterior sampling solution discussed earlier. This validates the efficiency of
the SPSA optimization scheme adopted.

The optimization is then performed 5 different times for each case, starting from
always the same initial point but using different random samples, and the results are
averaged. This aims to reduce the influence of the random samples used for 6 and of
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the random sequence Af’) for the design vector. For a given optimization run, though,

the random sequence AfP was kept the same for all the different algorithms in order to

simplify direct comparisons. The results are presented in Figures 3.3-3.7 and in Tables

3.4 and 3.5. For the results in the figures, no convergence criterion was utilized; the

optimization was carried out until the stopping criteria were enforced (200 iterations or

500,000 total system evaluations).

Figure 3.4 presents for the D, (left column) and D, (right column) design

problems the number of optimum IS dimensions n,’f selected for the AIS and AISR cases.

Results only for threshold 10% are reported since all other cases exhibit almost identical

trends. Figure 3.5 and Figure 3.6 present for D, and D, design problems, respectively,
the number of evaluations needed per iteration N, for each &, ., selection (rows of

figure) for each of the four cases considered (curves in each subplot).

15 15
1011 10}
rani fe e 01 1SRN TR T i 3 =
is .~ £ ~ i ey bl  psmmeny |y e ik Tt . A ——— - i SOREL
| RVTTTI TE ETE y | W LT TR Ll
1 . v vy
i
3 ' S
1 =
i :
i —x—AISR i - —x— AISR
- — — —AIS f — — —AIS
n
I S S S e o e
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
k (iteration) k (iteration)

Figure 3.4 Optimum number of IS dimensions n,’f selected for
each k for the AIS and AISR cases. Results are reported for the
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D, (left column) and D, (right column) design problems but only
for o, . =10% case

thresh

Figure 3.7 presents for design problem D, (passive) the probabilistic
performance I:](xk) attained as a function of the total number of simulations

performed N,” up to each stage of the optimization algorithm for each &

thres

, selection
(rows of figure) for each of the four cases considered (curves in each subplot). In the left

column, the estimates H reported are directly from the optimization algorithm itself; in
other words, different random samples are used within each estimate, which makes

comparison problematic (as it will be discussed next), whereas in the right column, the
same random samples were used, so it corresponds to ﬁ(x |{0°}) . Figure 3.8 presents

the same results for the D, (skyhook) case.
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Figure 3.5 Number of evaluations N, needed per & to establish
each chosen 0, for the D, (passive) design problem.
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Figure 3.6 Number of evaluations N, needed per iteration & to

establish each chosen 0,

for the D, (skyhook) design problem.
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Evaluations with different samples H (x) Evaluations with same samples H (x[{6°})

N e N e

Figure 3.7 Objective function value H as a function of the total
number of system simulations N,” up to each stage of the

optimization algorithm for the D, (passive) design problem.
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Evaluations with different samples H (x) Evaluations with same samples H (x]{0°})
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Figure 3.8 Objective function value H as a function of the total
number of system simulations N, up to each stage of the

optimization algorithm for the D, (skyhook) design problem.
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Table 3.4 presents the N for each case considered, that is the average number
of simulations needed untill the stopping criteria are satisfied. Finally, Table 3.5 presents
results for convergence based on the criteria defined earlier; in particular, it contains
the optimum objective function and the computational effort needed for convergence
N In parenthesis, the coefficient of variation for each result (over the 5 runs) is also
reported in both of these tables. It is evident that all coefficients of variation are small,
which shows that there is no strong dependence on the random samples utilized and, as

such, the comparisons discussed next are meaningful.

TABLE 3.4
AVERAGE RESULTS OF COMPUTATIONAL EFFORT NEEDED UNTILL STOPPING CRITERIA

ARE SATISFIED.

Ntol
S5 AIS AISR FIS MCS
fresh Passive |Skyhook | Passive | Skyhook | Passive |Skyhook | Passive | Skyhook
(D) (D) (D) (D) (D) (D) (D1) (D)
50, 396,108 | 500,000 | 444,902 | 500,000 | 500,000 | 500,000 | 500,000 | 500,000
(0.031) () (0.028) () () () () ()
10% 112,421 | 267,732 | 110,760 | 264,438 | 375,365 | 500,000 | 500,000 | 500,000
(0.034) | (0.057) | (0.040) | (0.059) | (0.010) () () ()
20% 58,616 | 99,078 | 43,533 | 86,696 | 135,651 | 236,842 | 162,862 | 500,000
(0.054) | (0.083) | (0.054) | (0.037) | (0.018) | (0.058) | (0.045) ()

Note: The coefficient of variation for each result is reported in parenthesis (over the 5 runs)
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Figure 3.7 and Figure 3.8 demonstrate the efficiency of SPSA since both design
problems converge very quickly (within 40 iterations) to objective function values close
to the optimum. In initial iterations, the number of dimensions chosen for IS is zero (in
other words, the AIS and AISR cases are algorithmically identical to MCS). As the
algorithm moves across the design space to regions with lower objective function values
(designs corresponding in this case to failure events being less likely) where there is
stronger sensitivity of the response /4 to the 0 values (and thus potential benefits from
implementing IS), n,’f quickly increases. Still, the optimum number of IS dimensions
remains far from the maximum number of dimensions (15 in this problem) which
demonstrates a definite preference for the number of model parameters for which to
perform IS and ultimately algorithmic differences between AIS (or AISR) and FIS.

Looking next at the computational effort needed per iteration (Figure 3.5 and
Figure 3.6 or Table 3.4), it is evident that the skyhook design creates significantly higher
challenges whereas as the algorithm moves to designs with smaller values of the
objective function (correlate the results in Figures 4 and 5 to those reported in Figure 3),
the required number of N, quickly increases. In many instances, this N, reaches some
form of plateau (equilibrium). The values of that plateau are reported on the right of
each figure to make the comparisons between the different cases and algorithms easier.
For MCS, changes in the threshold value lead to a reduction of N, based on the
coefficient of variation proportionality relationship given in Eq. (2.15), but the same

does not hold for any case implementing IS (stronger influence is evident). The reason
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for this is that in the proposed scheme, the IS densities are adaptively chosen utilizing
information from the system evaluations performed at each iteration; increasingd,, ..,
leads to a reduction of N, and thus, of the information available to adaptively select
the IS densities. This poses challenges in selecting the density characteristics for
minimizing the second moment in Eq. (3.15) and thus, decreases efficiency. As expected,

FIS has bigger challenges; for ,,., =20% (when little information is available to make
the IS decisions) and for the D; design problem, these lead to NV, values that frequently
correspond to higher computational effort than performing direct MCS. For the D,

design, the higher sensitivity makes IS in general more beneficial, leading to an

improvement for FIS compared to MCS even ford,,,, =20%. It is interesting to note

that the trend for higher computational burden for FIS as compared to MCS holds for all
cases examined during the initial iterations when the objective function has higher
values and the sensitivity of the response to 0 is evidently small. This agrees with the
well-known challenges of finding efficient IS densities in high-dimensional problems.
Due to the low sensitivity when the objective function is relatively high, IS is not greatly
beneficial during early iterations, and trying to find an appropriate density over the
entire 0 faces significantly challenges, even though these IS densities are adaptively
selected to optimize the anticipated computational efficiency. This does not mean that
the optimal IS distribution (given by Eq. (2.16)) does not exist, rather that the proposed

KDE-based approach is not efficient for approximating it.
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The AIS and AISR algorithms do not share, though, the same challenges as FIS
since the additional adaptive selection of the dimensions for which to perform IS greatly
improves efficiency. The computational effort for AIS never exceeds that of MCS (in the

first iterations, n,’f is set to zero as this is found to be the optimal case), and in most

cases, it provides a significant computational advantage; as soon as the algorithm has
reached regions in the design space corresponding to high sensitivity for the integrand,

the values for N, in the AIS and MCS cases have significant differences, close to 5 times
for D, and 30 times for D, (the more challenging case). In addition, AIS always out-

performs FIS, as expected. It is important to note that even for low values of the
objective function (skyhook case), the efficiency of the proposed IS scheme is high, even
though one would expect that formulation of IS densities could be challenging (rare
events are analyzed). Efficient IS densities should be attributed to their sequential
development, sharing information across the iterations of the optimization algorithm.
Another important comment relates to the fact that using samples for the kernels (in
the IS formulation) obtained over multiple iterations, not just relying on the last one,

greatly improves the robustness of the proposed IS scheme. When the latter is not
adopted and {0’ }, is set to {0“ }, (samples only from the current iteration are used
as kernels), significant challenges (not great improvement of computational effort) were
found for the 0, ., =20% and 10% cases when the number of such samples is typically

small. Maintaining samples from multiple iterations evidently solves this challenge and
increases robustness. Note that this has nothing to do with the selection of the density
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characteristics; in this case information from the samples in the current iteration are
always used, but with the samples used as kernels.
Moving now to the comparison between AIS and AISR, there are small

differences for the 6,,., =5% and 0,,, =10% cases, with AIS providing marginally

better performance and bigger differences exhibited for the O, =20% case in favor

thresh

of AISR. For this threshold, the reduced information (smaller N, ) on which the selection
of IS densities is based leads to considerable challenges, with frequently larger N,

values for the AIS case. The robust version, which adds higher order statistical
information in the selection of IS characteristics, does not suffer from similar
deficiencies, verifying the advantages that this formulation has to offer. When there is
not sufficient information to make the IS selections, adding this information for the
anticipated efficiency constrains the algorithm from making erroneous density selection
choices. It is also important to note that the differences between the AIS and AISR cases
seem to stem primarily from the selection of the optimal IS density characteristics, not
the number of IS dimensions, since the latter seem common (bottom row of Figure 3.4)
for both cases. All these trends are further validated by the results in Table 3.4; AIS and
AISR offer large improvements over FIS and MCS, whereas AISR behaves evidently

better than AlS for the o,,., =20% case.

Moving now to a comparison of the computational burden as related to the

guality of the solution obtained (Figure 3.7 and Figure 3.8), it is evident that FIS faces

significant challenges at early stages of the optimization, as the number N;” needed to
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reach regions corresponding to lower objective function values is very large. This should
be attributed, as reported earlier, to the attempt to formulate IS densities for all model
parameters when the sensitivity of the response to 0 is small. Another interesting trend
is the apparent bias in the estimates of the objective function when IS is implemented

for the 0, . =20% case (also evident for the O

thresh — thresh

=10%); the values obtained during
the optimization algorithm (left column of Figures 6 and 7) are significantly smaller than
the high accuracy values obtained for the {0} sample set. The problem is more evident
for FIS (compared to AIS and AISR) and should be attributed to the fact that the accuracy
threshold is set to high values (20% coefficient of variation), leading to erroneous
results as IS is enforced (this again pertains to the fact that limited information is
available for evaluating the statistical information). As expected, the variability of the
estimates obtained (judged by the smooth characteristics of the curve) is higher for the

high o,

thres

, or the lower objective function values. This also shows that the quality of the
results needs to be carefully evaluated, not relying on the objective function estimates
stemming directly from the optimization algorithm. This is also the reason why such
high coefficients of variation need to be avoided. Overall, the results in Figure 3.7 and
Figure 3.8 verify the previous trends; AIS and AISR greatly outperform FIS and MCS,
whereas improvement is evident for AISR over AlIS in the J,,., =20% case. In the latter
case, the robust selection avoids the artificial exploitation of the vulnerabilities related
to the selection of kernels characteristic based on erroneous statistical estimates. The

overall differences are smaller for the passive case compared to the skyhook case,
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something that should be attributed to the simpler characteristics (smaller number of
design variables, larger values for optimal objective function value) of the design
problem. It should also be pointed out that the faster convergence rate in the first
iterations for the passive design problem should not be considered as strange; the SPSA
convergence characteristics are not dependent on the dimensionality of the design
problem, this holds for the behavior of the algorithm in the long run, not in early
iterations where that dimensionality actually has an impact.

Comparing, finally, the different cases for O, it is evident that the

thresh ?

0,

e = 20% case leads to faster convergence. This should be considered as a validation
of the SPSA optimization scheme. Despite the low accuracy estimates obtained for the

objective function, through the adoption of common random numbers, good

convergence behavior is achieved. The use of 5,

=20% may impact the variability of
the estimates, though, as discussed in the previous paragraph, which is a feature one
needs to be careful about. Finally, the convergence results from Table 3.5 follow similar
trends, showing great computational savings for AIS and AISR, whereas the converged
solution for all cases seems to establish similar levels for the performance. The main

difference between the algorithms is the computational effort employed to achieve this

performance.
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TABLE 3.5

AVERAGE RESULTS FOR THE OPTIMUM PROBABILISTIC PERFORMANCE AND THE

COMPUTATIONAL EFFORT FOR CONVERGENCE.

AlS AISR FIS MCS
Ouresn| ReSUlts | passive Skyhook | Passive | Skyhook | Passive | Skyhook | Passive |Skyhook
(Dy) (D,) (Dy) (D,) (Dy) (D,) (Dy) (D,)
o 171,866 | 280,420 | 218,076 | 328,431 | 467,786 | 458,831 | 427,748 n/c'
o (0.238) | (0.291) | (0.209) | (0.192) | (0.331) | (0.142) | (0.377)
5%
A(x [0} 0.01042 [0.000665| 0.01043 |0.000661| 0.01052 |0.000712| 0.01081{0.00119
(0.007) | (0.046) | (0.005) | (0.033) | (0.022) | (0.092) | (0.051) | (0.230)
o 461,555 105,742 | 64,603 | 103,136 | 208,177 | 239,221 | 172,261 n/c'
y (0.332) | (0.292) | (0.205) | (0.372) | (0.291) | (0.250) | (0.287)
10%
A 10} 0.01042 [0.000671| 0.01041 |0.000658| 0.01043 {0.000667| 0.01072|0.00074
(0.006) | (0.024) | (0.008) | (0.023) | (0.011) | (0.052) | (0.046) | (0.11)
Ao 39,368 | 58,640 | 33,733 | 52,871 | 91,162 | 110,735 | 81,990 |462,317
(0.234) | (0.357) | (0.218) | (0.298) | (0.368) | (0.236) | (0.386) | (0.157)
20%
A 110} 0.01043 [0.000708| 0.010380.000671| 0.0105 |0.000681| 0.01044|0.00067
(0.005) | (0.048) | (0.007) | (0.042) | (0.012) | (0.077) | (0.005) | (0.048)

Notes: The coefficient of variation for each result is also reported in parenthesis (over the 5
runs). 'n/c stands for no-convergence, meaning that stopping criteria were satisfied prior to
convergence criteria. In this case, the performance reported is the one at the last iteration

Overall, the study shows potential for improved efficiency (reduction of

computational burden) through the proposed adaptive IS scheme as it provides great

computational savings for the stochastic simulation utilizing readily available system

model evaluations. Some of the key results in this illustrative example are the following:

e The adaptive selection of the IS dimensions offers great robustness and

circumvents the challenges associated with trying to formulate efficient IS
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densities for all dimensions (FIS). AIS (AISR) was never outperformed by either
MCS or FIS, as expected since the latter two are actually subsets of AlS.
e Making decisions based on reduced available information (meaning larger values

for 0,,..,) has some impact on the adaptive IS formulation, but this impact can

be limited if the robust version (AISR) is utilized for making IS selections.

e Even for low values of the objective function (skyhook case), corresponding to
high sensitivity to 0, the efficiency of the proposed IS scheme is high. This
should be attributed to the fact that IS densities are formulated by sequentially
sharing the information across iterations of the optimization algorithm. In other
words, this high sensitivity does not need to be captured within a single
iteration, rather as the optimization algorithm converges to a design.

e Adaptive IS performed at similar level of efficiency across all considered cases,
independently of the problem characteristics (sensitivity level, number of design
variables, thresholds chosen).

e Developing IS densities based on samples (for the kernels) obtained over
multiple iterations, not just relying on the last iteration, greatly improves the
robustness of the proposed IS scheme when the number of such samples (from

the current iteration) is small.

3.5 Summary
In this chapter, adaptive implementation of Importance Sampling (IS) was

considered to reduce the computational burden associated with optimization under
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uncertainty problems adopting stochastic simulation. Even though IS methods have
attracted significant attention over the past decades, there had been no investigation
aiming at their efficient integration within numerical optimization algorithms by sharing
information across the iterations of the latter. Two different challenges were addressed
for IS implementation: selection of the shape and characteristics of the IS densities and
selection of the model parameters for which IS is to be applied.

The proposed framework has a general form (no restrictions on the number of
design variables or model parameters or the complexity of the numerical and
probability models considered) and can be combined with any algorithm based on local
searches. The Simultaneous Perturbation Stochastic Approximation (SPSA) was chosen
here for this purpose, an algorithm that is appropriate for complex engineering
problems for which analytical expressions for the gradient might be impractical to
derive. The formulation of IS densities was based on samples that are distributed
according to the optimal IS density (the integrand of the integral corresponding to the
probabilistic performance). Rejection sampling was considered for obtaining these
samples utilizing readily available system model evaluations (no additional
computational effort was needed). Kernel density estimation was considered for
description of the target density through available samples with density characteristics
that were optimally selected by maximizing the anticipated accuracy for the estimate of
the performance objective if these densities were to be implemented as IS densities. A
framework was successfully established for facilitating this adaptive formulation of IS

densities without adding to the computational burden using only system evaluations
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that have been already performed (when evaluating the objective function). To avoid
the numerical problems when trying to develop IS for all model parameters, a relative
prioritization was also introduced by integrating a recently developed global sensitivity
analysis to quantify the relative importance of individual model parameters to the
overall probabilistic performance. Development of IS densities was considered only for
the most important ones. Ultimately, the global sensitivity comparison provided a
relative prioritization for each uncertain model parameter, whereas the optimization for
the expected accuracy provided an optimal selection of the characteristics of the IS
densities and of the exact number of model parameters considered in the IS
formulation.

The illustrative example demonstrated the efficiency and robustness of the
proposed adaptive IS formulation and stressed the importance of prioritization of the
appropriate subset of model parameters for forming the IS densities. The improvement
in computational cost was remarkable when compared to direct stochastic simulation,
and the adaptive selection of the IS dimensions circumvented the challenges associated
with trying to formulate efficient IS densities for all dimensions. When making decisions
based on reduced available information (limited number of available samples for
calculating the anticipated efficiency), the robust selection of the kernel characteristics
offered significant advantages. Overall, the adaptive IS implementation, coupled with
SPSA for the stochastic optimization, was shown to yield a significant increase in
algorithmic efficiency without compromising the quality of the results. Even within

challenging optimization settings (great sensitivity of the response to the uncertain
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model parameters), the proposed scheme provided results that demonstrate great
robustness and efficiency (actually greater for such cases, since the benefits from the IS

formulation are expected to be higher).
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CHAPTER 4:

OPTIMIZATION UNDER UNCERTAINTY WITH ADAPTIVE KRIGING IN AUGMENTED SPACE

This chapter considers the implementation of surrogate modeling to
approximate the system performance (or more appropriately the system response) for
optimization under uncertainty problems that rely on stochastic simulation. As
discussed in Chapter 1, kriging is adopted as a surrogate model since it has been proven
highly efficient for approximating complex response functions while simultaneously
providing gradient information and a local approximation of the standard deviation of
the metamodeling prediction error. The latter is incorporated within the probabilistic
performance quantification in the illustrative example considered, and the benefits from
this incorporation are demonstrated.

Although the framework can also be implemented for approximating the system
response with respect to just the model parameters, an augmented formulation is
considered here that offers a greater generality as well as larger potential
computational savings. Rather than building a separate kriging model for each design
choice examined (something that would be required if the surrogate model was
established only with respect to the model parameters), an augmented input space is

considered. Specifically, a sub-region of the design space is defined, and a kriging
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metamodel is built to approximate the system response (output) with respect to both
the design variables and the uncertain model parameters. High-fidelity model
evaluations are obtained at properly selected support points (experiments), and the
kriging model is then developed employing this information. This metamodel is then
used within a stochastic simulation setting to approximate the system performance
when estimating the objective function and its gradient for specific values of the design
variables, where the stochastic simulation is ultimately established with respect to the
uncertain model parameters. This information (i.e. estimate of objective function and
gradient) is then used to search for a local optimum within the previously established
design sub-domain. Only when the optimization algorithm drives the search outside this
sub-domain is a new metamodel generated, and the process is iterated until
convergence is obtained.

This framework provides great computational savings since the high-fidelity
model is only utilized for calculating the response for the chosen support points (as long
as the design choices remain within the considered sub-domain in the design space).
The main challenge is how to adaptively tune the kriging model, and various
enhancements are proposed toward this goal. For selecting the basis functions of the
metamodel, the global probabilistic sensitivity analysis introduced in Section 2.4.4 is
utilized. Higher order basis functions are assigned to the more important variables,
contributing to increased approximation accuracy. Furthermore, an adaptive DoE
approach is developed for selecting the support points, populating more densely those

regions in the model parameter space that have higher contribution to the integrand

104

www.manaraa.com



guantifying the probabilistic performance. This leads to a kriging model with enhanced
accuracy in those regions, something that ultimately improves the accuracy of the
objective function estimates. This adaptive DoE is accomplished with a very small
computational burden utilizing readily available information.

Before advancing further, it should be pointed out that the underlying
assumption in this chapter is that the input space for formulation of the kriging
metamodel is not of high dimension (say below 50 (Simpson et al. 2001c)) since
otherwise it would require a significant amount of information (number of support
points) to get an accurate approximation, making the implementation impractical. This
is an important constraint when considering the applicability of this framework, and
even though the approach discussed here can offer remarkable computational savings
compared to the adaptive IS formulation discussed in the previous chapter, it is
important to remember that the IS formulation suffers from no such constraints.

The nomenclature specific to this chapter is reviewed in Table 4.1.
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TABLE 4.1

RELEVANT NOMENCLATURE FOR CHAPTER 4

&(y) Kriging prediction error n Total number of support points
0 samples from #(8| x) n, Number of support p9|nts in
second stage of Hybrid DoE
i Mean of output over n Number of support points in
#i observation set ! first stage of hybrid DoE
A Kriging approximation of . .
(0] x) 7(0]x) n, Dimension of y
o} Standard deviation of output p(x) Al’tlfIFIa| probability density
function for x
0'§ (y) | Variance of prediction error R Correlation Matrix (kriging)
Weight parameter vector for .
¢ . . r Correlation vector
correlation function
b i al krigi luti Scaling parameter to
a, Optimal kriging solutions s, determine D,
D Threshold for selecting the IS , Scaling parameter for trust
i parameters 5 region reduction
re Threshold for selecting the re Scaling parameter to
D, . : : S . re
™| order of kriging basis functions ¢ determine D,
N li
F Basis functions matrix (kriging) . (und_erscore) ormalized .
versions for output quantities
f Basis functions vector y Augmented input vector
H Objective function estimated Design subdomain at iteration
kring (X) . P Xk th H
with kriging for k™ iteration
ﬁ( 0) Approximation of performance 5 Upper subdomain bounds for
X function through kriging k k" iteration
. (Subscript)i” component of " Lower subdomain bounds for
: vector g k" iteration
- (Superscript) ;" sample Z Output (observation) matrix
. th . .
. (Sul'osc'rlpt') k |terta1t|on of the Z Output vector
optimization algorithm
R Median krigi -
L, Subdomain length vector 3(x,0) edian kriging approximation
of output vector
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4.1 Optimization Problem Formulation and Augmented Input Space Definition

Metamodeling techniques for design problems under uncertainty are frequently
used for approximating the objective function (output) with respect to the design
variables (input) over the design domain (Jin et al. 2003; Wang and Shan 2007; Persson
and Olvander 2013; Lee et al. 2006; Huang et al. 2006). This approach requires the
probabilistic objective in Eq. (2.1) to be evaluated at several design locations in the
design space (corresponding to the support points). Since for each of these values of the
objective function evaluation, N simulations of the computationally expensive
numerical model are required, the overall savings established are relatively small. In
contrast, the formulation adopted here considers directly approximation of the system
response z(x,0), and in particular, the input considered extends to both the design
variables as well as the model parameters.

This augmented input space is defined as a tensor product between the design
and uncertain spaces X ® ® (Kharmanda et al. 2002), whereas to improve accuracy of
the metamodel, a smaller set of the design domain is considered instead of the entire
domain, establishing an iterative approach similar to the one described by Eq. (3.1).

This approach is denoted herein by
X0 = Gkrig(xk | {ej}k)7 (4.1)
where the function G,,,, represents the kriging-based optimization recursive relations and

the notation {0’}, is used to denote the sample set used within the k" iteration. Note

that this sample set ultimately changes from iteration to iteration, i.e. the proposed
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formulation corresponds to an interior sampling approach. The design subdomain in the
k™ iteration, also known as the trust region, of the optimization algorithm will be
denoted X, in the remaining of this chapter. To simplify some of the discussions, an
equivalent distribution forx p(x) is utilized, corresponding to a uniform distribution in
X, . This should not be interpreted as x being uncertain, simply as a tool to have
uniformity in some of the methodologies and terminology analogous to 0, which has its
own distribution p(0) (since it is actually an uncertain variable).
Thus, the input vector y for the kriging metamodel is composed of the design and
uncertain model parameter vectors
y=[x 0], (4.2)
while the output vector corresponds to the system response vector z(x,0). The

motivation for establishing a kriging approximation for the response and not for the

overall performance function /4(x,0) (which would have been the alternative choice) is

the fact that, as discussed in Section 2.1, the computational complexity of the

performance evaluation model for estimating /(x,0) based on z(x,0) is typically small.
Establishing an approximation for z(x,0) and then using the actual performance
evaluation model to estimate 4(x,0) circumvents one level of approximations and can

ultimately offer significant improvements in accuracy (Jin et al. 2003; Persson and
Olvander 2013). This approach further allows, as will be demonstrated in the illustrative
example, the explicit consideration of the local kriging prediction error within the

definition of the performance function in the metamodeling formulation.
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The kriging model provides an approximation for the response vector
z(y)=12(x,0), and through this, an approximation to the performance function is
established, denoted by l;(y) = i;(x, 0) . Simultaneously, gradient information can be also
obtained for both of these quantities as will be demonstrated in the next section. Using
this information, the numerical optimization scheme G,,, can be formulated establishing

ultimately a local search within the trust region.X, (defined by its upper and lower

bounds x, and X!, respectively). In this step, the objective function and its gradient are

then approximated as

Hyi,(¥) = | (x,0) p(6)d, (4.3)
VH,,, (X) = V(L)l?(x,ﬁ)p(ﬁ)dﬂ) = j@v(ﬁ(x,e) p(ﬂ)dﬁ) = j@ p(0)VA(x,0)d0, (4.4)

where for Eq. (4.4), we assume that the functions A(x,0)p(8) and (6ﬁ(x,9)/8xi)p(9)

(appearing within the gradient vector) are continuous on the domain Xx® and
bounded, so the differentiation and expectation operators can commute (Spall 2003).
The independence between p(0) and x was utilized in the last equality. These
probabilistic integrals can be then evaluated through stochastic simulation. Due to the
computational efficiency of the kriging metamodel, a large number of samples can be
utilized. Furthermore, IS can be considered for cases in which the computational burden
(despite this simplicity) is considered large. Following the IS formulation of Section 2.4.1,

the approximations to Eqgs. (4.3) and (4.4) are

7 )= L0 2@
Hoy (9 = 37 2 h000) - 5 (4.5)
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VA, (x)= Z L “;))Vh( X)), (46)

where sample set {Gf}k used in the stochastic simulation corresponds to independent
identically distributed (i.i.d) samples of the model parameters that follow the
distribution f,(0), corresponding to the proposal density used in the k" iteration of the
algorithm.

Utilizing this information, especially the gradient approximation in Eq. (4.6), an
appropriate gradient-based algorithm is adopted to establish a local search within X .
Two possible outcomes can occur for the optimization described by Eq. (4.1): (i)
converge to a local optimum within X, or (ii) reach the boundary of the search domain,
which means that the local search should stop to avoid extrapolations. This prompts the
optimization algorithm to advance to the next iterationx,,, and generate a new kriging
model if the overall optimization has not converged. Note the local search optimization
searching for the optimal solution within X, [utilizing Eqgs. (4.5) and (4.6)] has evidently
its own inner iterations, but we are interested here in the iterations of the exterior
optimization algorithm characterized by Eq. (4.1). In addition, if there is an overlapping

region between X, and X,,,, the supports point laying on the intersection of these

+17
regions can be reused at iteration k+1. The concept of stochastic simulation in

augmented space is illustrated in Figure 4.1.
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Figure 4.1 Illustration of stochastic simulation in augmented space

In the next section, the kriging metamodel implementation is briefly reviewed,

and then the proposed adaptive kriging formulation is presented in detail.

4.2 Review of Kriging Metamodeling Formulation

The kriging approximation is established with respect the input/output pair y/z
given a set of n support points (selection discussed later), also known as the training or
observation set, consisting of evaluations of the response vector {z";h=1,...,n} for
different input conditions {y”";k#=1,....n}, which will be denoted by ZeR"™ and
Y e R™, respectively. The corresponding input and output matrices are

Z=[z' ---7"]" and Y =[y(x') --- y(x")]", respectively.
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th

Utilizing kriging, the i component of the response output vector z,(y) can be

approximated though the median prediction from the surrogate model Z,(y)and the
corresponding error & (y) such that

z(y) = Z,(y) + (¥, (4.7)

where & (y) is a Gaussian prediction error with zero mean and variance af,l_ (y).

The probabilistic performance can be estimated through the median kriging model

predictions Z,(y), while also adjusting for the existence of & (y).

It is common to establish some normalization for z. The typical choice is to
transform each of its components into zero mean and unit variance under the statistics

of the observation set (Lophaven et al. 2002b)), leading to

. :ﬂ (4.8)

=i z

(o

1

where

(4.9)

The surrogate model is then formulated for z,, and the predictions are transformed to
z, by the inverse of Eq. (4.8). The corresponding (normalized) vector for the output is

denoted by z and the observation matrix Z.
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4.2.1 . Scalar Case
The main assumption behind the kriging model is that the true (scalar) function

z,(y) is one realization of a stochastic process (Sacks et al. 1989)
p —_— —_—
z,(y) =D a, [;()+S,(y) = fa] +S,(y), (4.10)
j=1

where f(y)z[ﬁl(y) ---Z.p(y)] is the basis function vector, @, =[¢, -+ ,]is an
unknown coefficients vector, p the total number of bases considered, and S.(y) is a
Gaussian stochastic process with zero mean and stationary covariance

cov,(y',¥y") =GR (YY), (4.11)
where R.(y’,y’) is the chosen spatial correlation function and &’ is the process

III

variance. While f.a. provides a “global” model in the Y space function, S,(y) creates

a “localised” deviation weighting the points in the training set Y that are closer to the
target point y.
The common choice for basis functions is polynomials of some low order,
typically up to second order. For example, a complete second order polynomial is
TV =0y =y, Wy =l (4.12)
Improved accuracy however, can be established if the order of the polynomial for the
different components of the vector y is explicitly optimized (Jia and Taflanidis 2013).

For the correlation function, different choices have been proposed in the

literature (Rasmussen and Williams 2006), ultimately impacting the smoothness and
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differentiability of the derived metamodel. The specific correlation function adopted

later in the examples is a generalized exponential function, leading to

Ry y)=[Texol-0 1y =¥/ "], @=[p - 0,1 (4.13)

i=1
where ¢ corresponds to the vector of weights. The proper tuning of these weights

contributes to the accuracy of kriging (Jones 2001) and to its ability to approximate
highly complex functions.

For the set of n observations (support points) with input matrix Y and

corresponding  output vector for the i” dimension Z, eR™, with
Z,=[z,(y)z(y)]', we define the basis matrix F eR"”™ such that
F. =[f(y")---f(y")]" and the correlation matrix R, € R"" with the J -element defined
as RY=R(y',y'),I,J=1--n. For a new input vector 'y, let
r,(y) :[Rl.(y,yl)---Rl.(y,y")]T represent the vector of correlations between the input

and each of the elements of Y. Then the median kriging predictions, corresponding to

the best linear unbiased predictor (BLUP) (Lophaven et al. 2002b), is
2, =1y o, +5.(y)'B;, (4.14)
where
a =(F'R'F)'F'R]'Z, B;=R;'(Z,-Fa,). (4.15)
Note that for a given training set, @, and B, are fixed; thus, to predict Z,(y) at a
new input, one only needs to compute f(y) and r(y) and perform the matrix

multiplications in the aforementioned equations. Additionally, all matrix inversions (that
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could potentially increase computational complexity) are independent of y and need to
be performed only once. Also, the process is solely based on matrix multiplications;
thus, when the output needs to be calculated for multiple inputs {y’;j=1,...,N}, as

established for examples within a stochastic-simulation-based setting, the entire

process can easily be extended to provide simultaneously (meaning here using a single

matrix expression) the output Z,(y) for all different y’ . In that case, the estimation is
established by substituting vectors f.(y) and r,(y) with the matrices that have rows
equal to f,(y’) and r,(y’), leading to

z(y)=f o, +%"B;,

%(y)_ II k _ k ]\']5/{ ) l N (4.16)
f=0f@y) .. £y 5 =[y) ..kl

The weight vector ¢, along with the process variance o;.z in Eq. (4.11), can be

obtained using the Maximum Likelihood Estimation (MLE) principle. The likelihood is

defined here as the probability of the n observations given the weights ¢, and
maximizing this likelihood with respect to ¢ ultimately corresponds to the optimization

problem (Simpson et al. 2001c; Sacks et al. 1989)
¢ =min|[R|" &7 | = min[In(R )+ 211n(&:)] (4.17)
¢ ¢

where |.| stands for determinant of a matrix and 6'1.2 is the least square estimate of the

process variance given by (Sacks et al. 1989)

57 =(Z,~Fa))'R(Z,~Fa))/n. (4.18)
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This optimization corresponds to a multidimensional nonlinear minimization
problem. However, it can be solved very efficiently using the modified Hooke and Jeeves
method as in the popular DACE toolbox (Lophaven et al. 2002a).

For the type of application considered here, where higher accuracy is sought
after at targeted regions of the input space, one could be tempted to formulate a
different optimization problem to replace the one given by Eq.(4.17), trying to explicitly
incorporate this goal in the selection of ¢, that is formulate an optimization problem
for @ with higher weight for the error in such regions.

The computational burden that such an approach would involve [see for
example the cost associated with optimization of moving least square response surface
characteristics (Taflanidis et al. 2013; Loweth et al. 2011)] is generally prohibitive. The
MLE approach, even though it targets global accuracy over the entire set of support
points, provides a highly efficient tuning for the kriging parameters (optimization within
a few minutes even for problems with many support points and numbers of basis
functions), and as such, it is the one always preferred. Note that if a larger number of
support points is available in the aforementioned targeted regions (which will be the
case here through the DoE discussed in the next section), the MLE approach indirectly

provides some greater preference toward reducing the error in these regions.
The prediction error variance for the normalized output, denoted ¢?i2(y) for

selection vy, is given by
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# ()= [1+u (F'R'E) u—r,(y)' R r(y)],

oy FTRCe (v (4.19)
where u =F R; 1, (y) - f,(y).

Note that this variance is a function of the input vector y and not constant over

the entire input space as is typically the case with most metamodeling techniques. This
is why the term local is frequently used to describe the error variance estimate provided
by kriging. Unfortunately, though, calculation of the estimate in Eq. (4.19) has an
increased computational burden, typically much higher than the kriging prediction given
by Eq. (4.14) (Lophaven et al. 2002a). This is the reason why explicit consideration of this
error in the analysis is frequently ignored.

The performance of the metamodel can be validated directly by the
process variance Eq. (4.18) which represents the mean squared error (Lophaven et al.
2002a), or by calculating different error statistics (such as coefficient of determination
or mean error) using a leave-one-out cross-validation approach. This approach is
established by removing sequentially each of the observations from the database, using
the remaining support points to predict the output for that one and then evaluating the
error between the predicted and real responses. The validation statistics are then
obtained by averaging the errors established over all observations.

Eventually, the kriging approximation for the actual output can be established

through the inverse of Eq. (4.8) using the statistics from Eq. (4.9) .

z(y) =0 z,(y)+ 45, (4.20)
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where the approximation for the normalized output Z,(y) is given by Equation (4.14).
Similarly, the prediction error variance may be obtained by scaling the normalized

prediction error variance in Eq. (4.19) by (c7)’,

o (V)= ()7 (4.21)
Gradient information can be also easily derived by differentiating directly Eqg.

(4.14) and noting that Egs. (4.15) are independent of y. This leads to
Vi=J,(y) o/ +J.(Y)'B;, (4.22)

where J, and J, are the Jacobians of f, and r,, respectively, with elements

o (y) .
Jf(y)1] :]—9 .] = laap’l = 1:"'7ny’
Vi (4.23)
OR.(v,y’ , '
JV(Y)g,:’(#y), J=lml=1,.,n,
!

which do not depend on the output. Similarly, the following expression for the partial
derivatives of the prediction error variance can be obtained by differentiating Eq. (4.19)

(Lophaven et al. 2002a),

V@ =26 ((F'R,'F)(F'R;’ oy B)H-R; ﬁ), j=1,p. (4.24)
oy, oy,

J
Note that both the gradients in Egs. (4.22) and (4.24) need to be scaled by (o) and
(o7)*, respectively, to obtain the information for the initial (not normalized) output.
Overall, some noteworthy aspects of the kriging metamodel are:

(a) The kriging predictions for any input ¥ that belongs in the initial data-set Y can
match the exact corresponding output; this behavior corresponds to an exact

118

www.manaraa.com



interpolator (Simpson et al. 2001c). This is not necessarily true for all
metamodeling approaches, as some have regression characteristics (response
surfaces for example).

(b) Kriging provides the variance for the prediction error, which is also a function of
the location y, as opposed to other surrogate modeling techniques that either
do not provide explicitly the variance for the error or keep it constant over the
entire input space (Taflanidis et al. 2013).

(c) The kriging implementation involves only matrix manipulations with matrix
inversions that need to be performed only once (for the definition in Eq. (4.15)).

(d) The optimization in Eq. (4.17) for the parameters that correspond to the
correlation function can be performed highly efficiently.

(e) Selecting the polynomial order for the basis functions for the kriging model is not
straightforward as there are no simplified approaches to accomplish this. In
general, different basis function selections need to be considered and their
accuracies compared (Jia and Taflanidis 2013). The latter can be obtained
through a cross validation approach which is, in general, cumbersome.

(b) Kriging provides the variance for the prediction error which is also a function of
the location y, as opposed to other surrogate modeling techniques that either
do not provide explicitly the variance for the error, or keep it constant over the
entire input space (Taflanidis et al. 2013).

(c) The kriging implementation involves only matrix manipulations with matrix

inversions that need to be performed only once (for the definition in Eq. (4.15)).
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(d) The optimization in Eq. (4.17) for the parameters that correspond to the
correlation function can be performed highly efficiently.

(e) Selecting the polynomial order for the basis functions for the kriging model is not
straightforward as there are no simplified approaches to accomplish this. In
general different basis function selections need to be considered and their
accuracy compared (Jia and Taflanidis 2013). The latter can be obtained through

a cross validation approach which is, in general, cumbersome.

4.2.2 Vector Case

Moving now to predictions for the entire vectorz, multiple metamodels can be
considered, i.e. separate metamodels for each component (this ultimately corresponds
to repeating the process for the scalar case multiple times), or a single metamodel can
be implemented for all components. This corresponds to using a common choice of
basis functions and correlation function for all outputs. In this case, which is the one
adopted in the examples considered in this dissertation, the extension from the scalar
case (repeating for each component and augmenting the results) is straightforward and

yields

2(y)=f(y) & +r(y)'p, .25
F(y) =& 1+ (F'R'F ) u—r(y)" R 'r(y)]. '
with the matrices defined as

o =(FFR'F)'F'R"'Z,
B'=R'(Z-Fa'), (4.26)
u=FR7r(y)-f(y).
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The only difference from the scalar case is replacing Z, with ZeR"™, where
Z=[Z,---Z, ], and the optimal weights can be provided by the minimization problem

(Lophaven et al. 2002b)
¢ = min| [R" 5* | = min[ In(R)) + 2n1n(3) ] (4.27)
¢ ¢
with 6> =Y 67 and 67 =(Z, —Fa;)' R (Z, —Fa)/ n. Compared to the
i=1
optimization for the scalar case, the optimization for the vector case requires evaluation

of 67 for each of the n, dimensions. Apart from this characteristic, the rest of the

approach is similar to the scalar case and can also be performed using the open source
DACE toolbox (Lophaven et al. 2002b).
The required gradients can be expressed as

Vi=J,(y)'a +J.(y)'B, (4.28)
2 Ax2 T -1 T -1 * -1
Vé =267 (F'R'E)XE'R;' Vr, -J §)-R;'Vr), (4.29)

where the Jacobians are the same as provided in Eq. (4.23) since they do not depend on

the system output information.

4.3 Adaptive Kriging Formulation

In the proposed framework, a kriging approximation is developed by sharing
information across the iterations of the optimization algorithm described through Eq.
(4.1). This approximation is established in the augmented input space and is

implemented within a stochastic simulation setting to approximate the system response
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for different values of the model parameters for specific values of the design variables,
as needed for estimates Egs. (4.5) and (4.6). Within such a setting the focus is here on
the adaptive DoE as well as the adaptive selection of the polynomial order of basis

functions.

At iteration k let x, denote the design variable vector that has been identified at
the end of the previous iteration of the numerical optimization Eq. (4.1). Evaluation of
the approximation to the system performance will be also available for x,,
{l;(xk,ﬂj);j =1,..., N} for the sample set {0/}, used to estimate the objective function
through Eq. (4.5). A localized box-bounded design subdomain X, (also known as trust
region) is defined; this domain is centered on X, and has an appropriate length for
each design variable (defining the length vectorL,) that ultimately prescribes the
upper and lower bounds for the design vector, xi and x;, respectively. Any appropriate
technique may be adopted for selecting the length vector L, (Rodrigues et al. 1998;

Rodriguez et al. 2000). A relevant recommendation for this is that the length is gradually
reduced as iterations progress to regions closer to the minima, where one needs higher
accuracy approximations (Thomas et al. 1992). A kriging metamodel is then established

within subdomain X, for the augmented input vector y.

4.3.1 Design of Experiments (DokE)
A critical issue for the kriging implementation is the DoE to obtain the n
observations (support points). As discussed in Chapter 1, space filling techniques or
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adaptive design of experiments are commonly preferred for this task. However, the
former may not provide the necessary accuracy in regions of importance, while the
latter may significantly increase the computational cost. Therefore, hybrid DoE is
proposed in this investigation instead.

Due to their distinct nature, the two different components of the input vector y
have different characteristics/demands related to their accuracies. For instance, in the

case of x, accurate approximations are needed within the entire domain X, since the

metamodel is ultimately used to compare different design choices within this entire
domain to converge to the optimal design configuration. This indicates that a space
filling technique should be considered, and Latin Hypercube (LHS) sampling is adopted
here for this purpose (Wang and Shan 2007; Simpson et al. 2001a). This formulation
partitions the domain of interest into equal intervals that are uniformly distributed, and
one sample is obtained per interval. In higher dimensions, these samples are randomly
permuted and paired to preserve the uniformity of the sampling density across the
dimensions.

An accurate approximation is needed on the other hand, for 8 over the domain
in the uncertain model parameters space ® that provides higher contribution to the
integrand in the evaluation of the objective function (4.3). Thus, a target region DoE is
needed for 0. Adaptive DoE has been proposed in the literature for this purpose
(Picheny et al. 2010), but this approach has an added computational overhead (to
identify these regions) and as such, is not advocated for the implementation considered

here. Instead, the target region is approximated to correspond to the important region
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for the integrand for X, that is proportional to the density 7(0]Xx,), which is given by
Eq. (2.2). Since this requires knowledge of Ai(x,,0), an approximation is established
considering the density 7(0x,), for which h(x,,0) is replaced by the kriging prediction
h(x,,0),

#(0|x) oc| h(x,0) | p(0). (4.30)
This density can then be readily approximated based on a sample set, denoted {0},
that can be obtained utilizing the readily available evaluations of l;(xk,ﬁ") for the
sample set {0/}, (established in the previous iteration) from density f,(0). Such

samples can be obtained through the rejection sampling approach discussed in Section

2.4.2. This is established by accepting the samples for which the following holds.

|h(Xk,9/)|p(91) >ma>{|l;(xk,9’)|w} (431)
u' f,(87) j ACH)

The sample set {0“}, ultimately represents the region in the ® space that
contributes more to the probabilistic performance for X, and as such, corresponds to a
good approximation (especially if X, is not overly large so that behavior with respect
to for X, is an adequate representation for the entire domain) for the target region in

which higher accuracy is sought after in the kriging metamodel. Any sample-based
density approximation approach, for example the KDE discussed in Section 2.4.3 or an

alternative parametric approach (also briefly discussed in that section) such as a
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Gaussian mixture (Scott 1992), can be utilized for this purpose. This density will be
denoted f(0) herein.

Because of the importance of this approximation and ultimately of the number
of samples in the set {8}, for providing sufficient information for this approximation, a
modification is further introduced to provide a sufficient number of available samples.
Upon convergence to X,, utilizing the stochastic simulation estimates in Egs. (4.5) and

(4.6), an additional sample set beyond the N samplesin {6/}, is generated to obtain a

large sample set consisting of N, samples for which ﬁ(xk,ﬁ) is evaluated. The

rejection sampling in Eq. (4.31) is then performed over this sample set. Given that
evaluation of ﬁ(xk,ﬂ) involves a small computational effort, this requirement may be

easily satisfied. Additionally, a relaxation approach such as the one presented in Eq.
(3.9) could have been considered.

Finally, it is important to consider that the kriging metamodel needs to have
sufficient accuracy even in regions beyond this specific target region since erroneous
approximations in such regions can impact the estimation result (these regions may
become erroneously important because of such errors). This consideration leads to the
following two-stage hybrid DoE, with the first stage aiming to obtain satisfactory global

accuracy in the broader domain ©® of importance and the second stage aiming to obtain
higher accuracy in the target region; initially (first stage) n samples are obtained,
adopting a space-filling approach within the domain of importance based on p(0) (for

example, 4-5 standard deviations away from the median values for each model
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parameters). Then additional n, are obtained from a density approximation based on

samples set {8°}, . The total number of support points is then n=n; +n; .

4.3.2 Selection of Basis Functions’ Order

Another important question for the kriging approximation is the order of the
polynomial basis functions for each component of the input vectory. Selecting the same
higher order (for example second order) for all components might reduce the accuracy
of the kriging metamodel; ultimately, components that exhibit higher sensitivity should
have higher order polynomials associated with them (Jia and Taflanidis 2013). The
optimization to identify the best basis function selection is a challenging task as
discussed earlier. This challenge is circumvented herein by integrating the global
sensitivity analysis discussed in Section 2.4.4 and selecting second order polynomial
functions only for the most important components (linear polynomial functions are
considered for the rest).

For the augmented vector y, this sensitivity analysis is established in the
following way. As soon as the evaluations of the system performance for the support
points are computed, the auxiliary density function

7(y) = 7(x,0) oc| h(x,0) [ p(8) p(x) o< 1(x,08) | p(0), (4.32)

is considered (recall p(x) is simply a uniform distribution within X, ), and

samples from it are obtained through rejection sampling. The n, support points

available from the second stage of the hybrid DoE are considered for this purpose within

the rejection sampling approach discussed in Section 2.4.2. Recall that these points
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follow a uniform distribution for x and distribution f,;'(0) for 0. Thus, the samples from

the target distribution in Eq. (4.32) correspond simply to samples for which the

following inequality holds,

LIESUDIV. U I {Ih(x" 0| 28 } (4.33)
u’ £7(07) =Lt} ’ £:(07)

This approach leads to total of N, samples {y’ }, and to KDE approximation for

the density in Eq. (4.32),

~ :LNS l yi_yis
#(y,) Ns;{t,- {K(—Q m (4.34)

with bandwidth ¢, =1.06:N, "o, with o, corresponding to the standard

deviation of the samples {y’}. The relative information entropy D(z(y,)|| p(»;)) can be
approximated through the numerical integration of Eq. (2.24) and used to rank the
different components of the input vector according to their importance.

A threshold D! can then be set to determine the importance of the input
vector components. If the value of relative entropy is larger than this threshold, that
particular parameter is assigned a higher order basis function (e.g. quadratic). In
contrast, if the relative entropy value is less that the threshold, the parameter is
assigned a lower order basis function (e.g. linear). Note that similarly to the approach
discussed in Section 3.2.3, the aforementioned threshold can be adaptively selected to

correspond to a fraction of the highest relative entropy value. If the allowable

percentage reduction of the maximum entropy among the entire input vector is s° <1,
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Dy, =i max [ D(7(y) | p(3)) ], (4.35)
and this formulation ultimately leads to consideration of higher order basis functions for
parameters that correspond to relative entropy values at least equal to s)° of the

maximum entropy of the input vector.

4.4 Optimization under Uncertainty with Adaptive Kriging

4.4.1 Considerations for Implementation across Iterations

As discussed earlier in the proposed framework, the kriging approximation is
developed by sharing information across the iterations of the optimization algorithm
described through Eg. (4.1). The remaining questions for a successful implementation

are the following:
a) How is the proposal density f,(0) for the estimations in Egs. (4.5) and (4.6)

established?

b) How is convergence evaluated?
c) What are the recommendations for the selection of the length vector L,

defining the trust region?

Starting with the proposal density f,(0), this density may be selected based on
the information from the sample set {68}, from distribution 7(0|x,), which actually

corresponds to the optimal IS for design configuration X, . This is similar to the concept

advocated in (Cannamela et al. 2008) with the difference being that information readily
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available is employed [set {8}, ] rather than constructing a metamodel solely for the
purpose of formulating IS densities. The density 7(0|x,) is expected to provide a
satisfactory accuracy for the entire domain X, if, as discussed previously, X, provides
an adequate representation of the behavior of the integrand for different design
configurations within X, . Recall that exploiting the efficiently of the kriging metamodel,
a large number of samples N can be used in this case for the stochastic-simulation-
based evaluation of the objective function and its gradient, described in Egs. (4.3) and
(4.4), respectively. As such, no special attention needs to be placed on a highly efficient
IS formulation; improvement in accuracy is primarily sought by adopting a larger
number of N, though considerable advantages are also expected from the IS
implementation. For example, the simple KDE approach presented in Section 2.4.3 can
be implemented with no special attention given to the optimization of the bandwidth
characteristics discussed in Chapter 3. Still, IS should be formulated only for the more
important model parameters, and the global sensitivity analysis discussed in Section

2.4.4 can be incorporated for this purpose. Utilizing the readily available sample set
{0}, , the entropy for each model parameter 6, is estimated through Eq. (2.24) utilizing
the approximation to 7(0|x,) established through Eq. (2.23). The IS formulation is

considered for only for the most important parameters, corresponding to entropy larger

than some pre-defined allowable percentage reduction s, <1 of the maximum entropy

among the entire group of model parameters,
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Dmin = Se mlaXI:D(ﬂ-(ez |Xk) || p(el)):l (436)

Ultimately, this implementation is identical to the one considered for selection
of the order of the basis functions in Section 4.3.2 (same sample set and entropy
calculation approach utilized) with the only difference being that only the & component

of the kriging input vector y is considered (x is not included).
Moving now to the convergence of the algorithm, this is established when the
new identified optimum x, is a local optimum of the trust region X,. To further

improve the quality of the obtained solution, a second optimization stage is proposed;
upon convergence, the number of support points is increased to establish a higher

accuracy kriging metamodel, and the optimization described by Eq. (4.1) is repeated.
This allows the use of a smaller number of support points n=mn +n; in the initial

iterations, until convergence is established. Ultimately, we are not concerned with
obtaining high accuracy estimates for the kriging metamodel at the initial iterations;
establishing an approximate descent direction in the design domain toward the optimal
design is sufficient (greedy optimization approach).

Finally, with respect to the length vector selection L,, it can be initially
considered as a specific fraction s; of the design domain X, i.e. L, =s/X. At each
iteration, a specific reduction s” of this proportionality can be implemented, leading to
s, =(s")""'s] and L, =s, X . Upon initial convergence, a further reduction by s can be

established to localize the search around the candidate optimum.
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Figure 4.2 provides an example of how the algorithm progresses through the

design space. The squares are the trust regions X, for each iteration. The gray dots

show the intermediate steps needed to find a local optimum within the trust region

(only using evaluations of the kriging model). The dash-dot line shows the second stage

of the optimization that starts when the first stage has encountered an interior point

local optimum. This stage has a significantly reduced length, and the number of support

points within the domain is increased in order to increase the accuracy of the kriging

model near the optimum point.
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Figure 4.2: lllustration of the evolution of trust region

4.4.2 Algorithm for Adaptive Kriging Implementation

When combining the previous

ideas,

one can formulate the following

optimization algorithm utilizing adaptive kriging. First, define the bounded design space
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X , the starting point of the algorithm X, the number of support points for the hybrid

DoE approach n and n;, respectively, including the number of support points for the

f

second optimization stage n; /

and ny . Select the number of samples N for the
estimation of the objective function and its gradient utilizing stochastic simulation, the
number of samples N for which ﬁ(xk,ﬂ) will be obtained, the allowable percentage
reduction s, <1 of the maximum entropy for the IS formulation, and the similar value
for the basis function formulation s <1. Finally, choose the fraction parameter s
defining the initial trust region, its reduction s” per iteration and the final reduction
upon convergence s_;. A general flow diagram of the adaptive kriging algorithm can be
observed in Error! Reference source not found..

At iteration k& of the numerical optimization algorithm [Eq. (4.1)] perform the

following steps:

e Step 1 (trust region definition): Define box-bounded search domain X, centered

YA 25 )
around ¢ with length vector given by L =(s") SIX. If convergence has been

established (last iteration), further reduce length vector by 5. Adjust (truncate)

trust region if it exceeds the design domain bounds X .

s f
e Step 2 (support points): Employing the hybrid DoE forﬂ, obtain (n if

convergence has been established) samples using a space-filling approach (LHS)

s f
in the region of importance for p(ﬂ)' then obtain ™ (n2 if convergence has
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been established) samples from densityfks(e) [p((')) in first iteration]. For X,

— s —nf S
n=mokm n=ntn

obtain if convergence has been established) samples

using a space filling approach (LHS) in X .

Step 3 (evaluation of model response). For all the support points, evaluate the

YA
model response 2(x’,0%); j=1,....n} and ultimately the system performance

function {h(x’,07); j =1,...,n} _

Step 4 (selection of basis functions): Based on the evaluations of the
performance function on the support points from the second stage
(h(x’,07);j=1,...,n}}

7(x,0)

, obtain samples from through rejection sampling

as in Eqg. (4.33). Then calculate the entropy for each component of the output

vector D(z(y)l p(3,)) using the approximation in Eq. (4.34) obtained through
these samples. Consider higher order (quadratic) basis functions only for
components of the input vector with relative entropy higher than the value given
by Eq. (4.35) and lower order (linear) basis functions for the rest.

Step 5 (kriging model): Employing the information in steps 1-4, build the kriging
model in augmented input space through the approach discussed in Sections

4.2.1 (scalar case ) and 4.2.2 (vector case).

Step 6 (trust region local optimum): Simulate a set of Nsamples from

distribution 1:(9) [p(ﬂ) in first iteration] and perform the optimization

described by Eq. (4.1) utilizing estimations in Eq. (4.3) and (4.4) and employing a
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gradient-based algorithm. Identify local optimumxk. Note that this local
optimization corresponds to exterior sampling but the overall approach [Eq. (4.1)

1] to interior sampling.

Step 7 (information for Xi41 and proposal density formulation for DoE): Consider
Xet =Xk and evaluate the response and the performance function through the
kriging approximation for N, samples. Obtain sample set 0% through Eq.

(4.31) and establish Jeu(®) either through KDE or through parametric density

estimation.

Step 8 (IS proposal density for iterationk"‘l): Utilizing the same sample set

{ea}k”, formulate, for example through KDE, the IS proposal densityfk“(e).
Perform global sensitivity analysis by calculating the entropy through Eq. (2.24)
using the available samples to establish the approximation given by Eq. (2.23).
Consider formulation of IS only for model parameters with entropy values higher
thanin Eq. (4.36).

Step 9 (convergence check): If Xx,,, is on the boundary of X, , convergence has

not been established and proceed back to Step 1 and advance to k+1. If not,

convergence has potentially been attained, and the second optimization stage

needs to be implemented by repeating steps 1-6 withn =n/ +n] and .
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Figure 4.3 Flow diagram for adaptive kriging implementation in
the augmented input space

4.5 Case Study: Half-Car Suspension Model Driving on a Rough Road

The framework is illustrated next with the same example considered in Chapter
3 (Section 3.4), where the optimization of the damper characteristics for the suspension
of a half-car nonlinear model riding on a rough road is considered. The same numerical
and probability models are considered here again (same as in Sections 3.4.1.1, 3.4.1.2,

and 3.4.1.3), where two different design cases are examined: D, corresponding to a
passive suspension and D, investigating a semi-active skyhook suspension

implementation.
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4.5.1 Transformation of Performance Function and Gradient Evaluation
Recall that the response quantities of interest z. for the half-car suspension
model correspond to the Root Mean Square (RMS) of the vertical acceleration at the

center of mass (RMSy ) and the suspension’s damping forces at the front and rear of
the car (RMSF” and RMSFM_ respectively). Since the performance function formulation

described by Eq. (3.37) involves the log values of these quantities, the kriging
approximation is formulated here directly for these log values. As such, the response

vector for the kriging implementation corresponds to

In(RMS;; )
z(x,0) = ln(RMSFdf) . (4.37)
ln(RMSFdr)
Furthermore, the prediction error from the kriging metamodeling can be directly

incorporated into the performance function definition. This is established by considering

the transformation of the probability of exceedance for response quantity z ., described

by Eq. (3.39), when the log of that quantity is expressed by the kriging relationships
given by Eq. (4.7). This leads to

Plz,,>beg]=Ple, <z, /b]=Plin(e)<In(z,)-In(b,)],
=P[In(g)) <z, + & —1In(b,)] = Plln(g,) - & <z, —In(b))], (4.38)

d 21’ — 11'1(bl)

\o: +o
where Z, corresponds to the kriging approximation for In(z,) and the last equality is

based on the fact that since In(g,) and & are zero mean independent Gaussian
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variables with variances of,_ and o, respectively, their sum (or difference in this case)

is also a Gaussian variable with zero mean and variance o} +o; . This leads to the

following approximation to the performance function,

A

h(x,0)==> @ 2, —In(b) (4.39)

1 3
3G | Jor+a? |
which is obtained by using the kriging metamodel predictions while also incorporating

its prediction error. The gradient of this expression is also needed and can be derived as

~ 3 > —
Vh(x,0)=%ZVd> £ —Ind)

b
: [ 2 2
i=1 O'é‘_ +O'g‘_

3 s 5 _
— _Zd) Zi log(bl) V Zi ln(bz) , (440)
35| Jol+al | (ol +a!
1< | 2 —log(h) vz, (¢ -In(b)) o >
=320 > > 5 2 (2 2732 Vo—é, ’
33 \/Jél_ to, \/Géi +o, (o; +0,)

where ¢[.] corresponds to the Gaussian Probability Density Function (PDF),
which by definition is the derivative of the Gaussian CDF ®[.], and all required gradients
in the last equation were given in Section 4.2.1.

Ignoring the prediction error, the above two quantities are simplified to

R 1< (2 —In)
h(x,0)=—Y @ ZL—772 | 4.41
( )3; ( . J (4.41)
« 1<, | 2 —log(b,) | VZ.
Vh(x,0)=— ! L L 4.42
( )3;{ — (4.42)
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4.5.2 Optimization Details
The design domain X is selected similar to the ones in Section 3.4.2. For the

passive design case, the design domain has upper bounds [1000 1000]Ns/m and
lower bounds [0 O]Ns/m; for the skyhook implementation, the upper bounds are

[400 4000 400 4000]Ns/m and the lower boundsare [0 O O O]Ns/m. Forthe

trust region definition, the length of the initial region L, is selected as 20% of the design
domain X, i.e. s/ =0.2 (recall L, =sX), with a reduction in size of 5% with every

iteration, i.e. s" =0.95. When the optimization has reached the last stage, the reduction

in the trust region is set to 50% ors’, =0.5. For the local search within X, the trust-

region-reflective algorithm is adopted, employed through the MATLAB optimization
toolbox (Coleman et al. 1999). Recall that the local search corresponds to an exterior
sampling (same samples are utilized within the trust-region-reflective algorithm), and
the overall approach corresponds to an interior sampling (different sample set is
generated whenever the algorithm is initiated at the beginning of each local
optimization). Note that the main contribution of this investigation resides in the
increased efficiency for the estimation utilizing the adaptive kriging, or in other words,
on the development of the kriging implementation used within the local search. Thus, a
standard approach was adopted for the local optimization. The maximum number of
overall iterations is set to 20, while the maximum number of iterations for the search is
set to 30. These are hard convergence bounds that are only activated when divergence

problems exist (and are introduced exactly for that purpose).
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The number of support points for the first hybrid DoE stage is selected as

n' =200 for both design cases, and the second hybrid DoE stage is selected as n; =400

for D, and n, =700 for D,. The increased number of samples in D, was chosen to

accommodate the larger number of design variables as well as the greater sensitivity of
the response expected in the O domain since, as seen in previous Chapter, the optimum
for that case corresponds to rare event simulation. The number of support points for

the second optimization stage, for increasing the accuracy of the kriging approximation,
is taken as double the ones for the initial iterations, i.e. n/ =400 for both design cases,
while n/ =800for D, and n =1400 for D, .

The number of samples for the estimates in Egs. (4.5) and (4.6) for the local

search is taken as N =2000 for both the D, andD, problems and increased to
N =10000 in the second optimization stage. The total number of simulations for
fz(xk,ﬂ) to inform the selection of IS densities and the sampling density for the second
stage of the DoE approach is set to N, =10000. For the selection of order of basis

functions and of the dimensions to formulate IS densities, the identification of
importance discussed earlier in Sections 4.3.2 and 4.4.1 is adopted. For the basis

functions, the cutoff entropy with respect to the maximum entropy over the entire
input vector is set to s.° =0.4. It means that input parameters with relative entropy

values less than 40% of the maximum entropy value are going to be assigned linear basis

functions, while those with values greater than 40% of the maximum entropy are
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assigned quadratic basis functions. The IS cutoff is set to s, =0.3, meaning that

uncertain model parameters with relative entropy values less than 30% of the maximum
entropy value are neglected for importance sampling. A parametric approach is
employed to construct the IS density (due to its simplicity); a Gaussian density with
mean and variance of the available samples is considered.

Apart from the fully adaptive kriging implementation [(a)adaptive selection of
order of basis functions and (b) hybrid DoE] that additionally incorporates (c) the kriging
error in the objective function formulation, three additional cases are examined,
neglecting each time one of the aforementioned three components (a-c). This leads to a
total of four different optimization approaches, and through comparison of each of the
latter three to the first one can directly demonstrate some of the advantages of the
proposed adaptive kriging formulation. Approaches (i) denoting Adaptive Kriging (AK) ,
and (ii) denoting Adaptive Kriging with Error (AKE) correspond to the proposed
algorithm that adaptively employs the probabilistic sensitivity analysis to select the
order of the basis function for the kriging model and also employs the proposed hybrid
DoE. The only difference is that approach (i) does not include the kriging error in the
objective function while approach (ii) does. Approach (iii) denoting Quadratic Kriging
(QK) uses quadratic basis functions for all the parameters of the kriging mode, i.e. does
not employ the probabilistic sensitivity analysis to select the order of basis function, but
employs the hybrid DoE; the kriging error is also not included in the objective function
for this case. Lastly, approach (iv) denoting Latin hypercube Kriging (LK), employs the

traditional sampling technique of LHS for both x and 0 (i.e. does not differentiate in the
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second optimization stage) and uses quadratic basis functions for all the parameters of

the kriging mode without including the kriging error in the objective function. This last

configuration is the baseline case, where none of the proposed advances are employed.
The optimization is performed 5 different times for each design case starting

from a different initial design X, ; the initial points for the different trials are reported in

Table 4.2.
TABLE 4.2
INITIAL DESIGNS FOR THE DIFFERENT OPTIMIZATION TRIALS
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
» X, | [100,100] | [100,900] | [900,900] | [900,100] | [100,500]
X [50,200, | [350,3000, | [350,200, [50,3000 [50,200,
2 50,200] 350,3000] | 350,200] 50,3000] | 350,3000]

4.5.3 Results and Discussion

To facilitate a better understanding of the different optimization approaches in
terms of the kriging implementation, initially a cross-validation is discussed extending to
the kriging metamodel itself (approximation of the system responses) as well as to the
estimate of the objective function. After that preliminary comparison, the results of the
optimization are discussed in detail. The cross-validation is used to provide insight for

this comparison.
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4.5.3.1 Cross-Validation of Kriging Metamodel

The cross-validation of the metamodel is examined within the context in which it
is used for the numerical optimization; the support points are obtained in the
augmented input space, then the kriging metamodel is established and finally it is used
to estimate the objective function for specific values of the design variables through the
stochastic simulation approach given by Eq. (4.5). The design case D, is examined as it
corresponds to a more challenging implementation (higher sensitivity in the model
parameter space), and as such, it can demonstrate more clearly specific patterns and
trends. The domain for the design variables has lower and upper bounds,
[120,1400,120,1400]Ns / m and [200,2200,200,2200] Ns / m, respectively.

A total of 900 support points are obtained using the two-stage DoE, and the
kriging metamodel is then optimized for the system response following the procedure
outlined in Section 4.2. The cross-validation is established with respect to (i) the

predicted response (for each component z;) as well as (ii) the resultant performance
function. A leave-one-out cross validation is adopted. This is established by choosing a
set of validation points corresponding to input {y”;jp=1---,N,} and output
{z(y”); jp=1,---,N,}, then removing sequentially each of these points from the

observation set, and using the remaining support points to predict the output for that
one left out in order to evaluate the error between the predicted and real values. The

validation statistics are then obtained by averaging the errors established over all N,

observations. For scalar outputs, a common measure of the fit is the coefficient of
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. . 2 . . . .
determination R, corresponding to a normalized squared error metric, which for

response quantity z;(y) is given by

R2 —7_ 4
z‘. SS].;‘ b

Ny . . 2

SSE, =3 (z(y")-2(y™)) , (4.43)
ip=1
N _ R 2

SST, = Z(Zi(y”’)——z;(yp)j .

= Np oo

A similar approach holds for the performance function with zl.(yj") replaced by
h(x”,07) and Z,(y”) by h(x”,07). In this case, the coefficient of determination is
denoted by R,f. This coefficient of determination expresses the portion of the variability

in the data (validation points) that can be explained by the kriging metamodel with
values close to 1 corresponding to high accuracy.

Results are presented in Table 4.3 for both Rf‘_ and R,f using a set of 500

validation points. All three different kriging implementation approaches discussed in the
previous subsection are considered (note that in this case considering or not a

prediction error has no impact, which excludes that case).
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TABLE 4.3

CROSS-VALIDATION ERROR STATISTICS FOR THE DIFFERENT KRIGING CASES

Kriging approach Rfi R,f

Kriging with hybrid DoE and
entropy selected basis [0.8745 0.9942 0.9802] 0.88293
function (AK)
Kriging with hybrid DoE and
all quadratic basis function | [0.8808 0.9944 0.9819] 0.86099
(QK)

Kriging with LHC and all

guadratic basis functions (LK)

[0.9696 0.9465 0.9493] 0.93568

The results (compare first two rows in the table) indicate that the adaptive
selection of basis functions provides a marginally worse accuracy with respect to the
system response, but is better with respect to the performance function. This should be
of no surprise; the adaptive selection is based on information from the performance
function (sensitivity of the integrand that involves that function) and not the system
response, and as such, it is expected to provide primarily an improved accuracy for that.
What is surprising at least at a first glance, is the significantly improved accuracy when
the hybrid DoE is not adopted, rather the space filling approach (LHC) is utilized,
indicating a preference for the latter (LHC) and an inability of the proposed DoE to
enhance the accuracy of the metamodel. This trend is again easy to explain; the
adopted accuracy measure, the coefficient of determination, assesses the quality of the

metamodel approximation over the support points and not over the target region of
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importance, which is ultimately what we are interested in and the motivation for
introducing the hybrid DoE in the first place. The comparison between the AK and LK
approaches is established over different sample sets; the uniformity of the support
points for LK contributes ultimately to better performance for the coefficient of
determination over these support points, but this does not necessarily mean better
accuracy in estimating the objective function. A weighted squared error could have
been utilized for this purpose (Picheny et al. 2010) to evaluate the goodness of fit over
the targeted region rather than globally over the domain of the support points, but the
calculation of this error typically involves an additional computational burden, so this
integration within the proposed framework is difficult to justify. Finally, it is also clear
that in the targeted region, the log of the RMS acceleration of the center of mass is the
response quantity that shows the greater variability and is ultimately the more
challenging one to approximate for the kriging model; the coefficient of determination is
much lower for that quantity when looking at the AK and QK approaches. This should be
attributed to greater sensitivity of that acceleration to the dynamical system
characteristics.

A second validation step is then performed by assessing the accuracy of the
objective function estimate provided by Eq. (4.3) for the different approaches
considered. This is established for a specific value of the design vector corresponding to

x, =[160,1800,160,1800] (test design). Since AK and QK provide similar performance,

the comparison is established only with respect to the AK and LK approaches.

Additionally, for both of them, the inclusion or not of the prediction error is considered
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when defining the performance function for the system model. The validation is
performed by comparing against the estimate provided by the actual numerical model.
For the stochastic simulation (to obtain the estimates for the objective function), a large
sample set of N =10000 samples is utilized following the guidelines presented in
Section 3.4.3; the same samples (CRN) are used across all evaluations to enable a
consistent comparison, and appropriate importance sampling densities are established
to get a small coefficient of variation (< 4%) in the obtained estimates.

The results are reported in Table 4.4, and the goodness of fit is evaluated by
comparing the estimate obtained from the kriging implementation to the estimates
provided when the actual system model is utilized. Immediately, the superiority of the
proposed DoE is evident. The LHS approach, despite offering a globally better
approximation as indicated by the better coefficient of determination values, provides a
significant overestimation of the objective function. This provides an important
validation of the proposed adaptive DoE focusing on the targeted region (integrand of
the probabilistic performance). Additionally, it is evident that inclusion of the prediction
error from the kriging constitutes a significant improvement in accuracy. For the
proposed implementation (compare AK and AKE) when the error is not included, a
significant underestimation of the probabilistic performance is provided. This shows the
importance, at least from an accuracy perspective, of including the kriging error in the
estimation of the performance function, despite the fact that , as discussed earlier,
estimation of the local variance for this error is a computationally more demanding task

(at least when compared to the estimation of just the kriging mean prediction). Note
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also that the error increases the estimated probabilistic performance; this trend is
anticipated based on similar studies (Jia and Taflanidis 2013) since the performance
corresponds to a rare event.

A final interesting comparison is the computational cost required for the
different implementations; the N =10000 evaluation of the actual model needs 1 Hr on
an Intel Xeon CPU at 3.2 Ghz, whereas the kriging implementation requires 180 secs
when no error is included, and 240 when the error is included. This directly shows the
great computational savings accomplished in this example through the kriging

implementation.

TABLE 4.4

PROBABILISTIC PERFORMANCE H (x| {6°})

Actual
Case AK AKE QK QKE system
model

H(x|{0°}) | 0.000306 | 0.000742 | 0.000964 | 0.002265 | 0.000614

Statistics estimated through stochastic simulation, and obtained through the different
kriging implementation approaches and the actual system model.
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4.5.3.2 Optimization Results
The discussion moves now to the more interesting aspect, the optimization

through the proposed kriging formulation. The results are reported in Table 4.5 for D,
and Table 4.6 forD,. Recall that the different trials in these tables correspond to
different initial conditions for the algorithm. In particular, the optimal solution X', the
total number of simulations of the system model until convergence is established N’
the objective function value obtained through the use of the kriging metamodel
I:[krig(x*), which is obtained directly from the optimization algorithm, and the objective

function value obtained through the use of the actual system model ﬁ(x* [{0°}) are

reported. For the latter, and following the same approach as in Chapter 3, the same
samples (common random numbers) are used across all comparisons for each design

problem (but different for the skyhook and passive applications for the reasons
discussed earlier) to enable a consistent comparison. The notation ﬁ(x |{0°}) is used to
explicitly denote the dependence on this sample set {8°}. N =10000 samples are used
in this comparison, which facilitates a small coefficient of variation for I:I(x [{0°}), close
to 2% for case D, and 4% for case D,. A three-fold comparison can be established
based on these results:

(@) Comparison between I:Ik,[g(x*) and I:I(x|{00}) (the simplest one) shows the

accuracy of the kriging implementation.
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Tot
(b) Comparison of the N, for different approaches shows the computational

efficiency for convergence of the algorithm
(c) Comparison between I:[(x |{0°}) and the actual optimal solution of the problem

shows the robustness of the approach in converging to the true optimum. Recall
that the optimal solution reported in Section 3.4.2 for this problem, obtained

through exterior sampling and using a costly global optimization approach, was

found to be x"=[713 606]Ns/m with respective performance
F[(x*) =0.0104 (1.4%) for the passive implementation and
x =[186 1651 197 1512]Ns/m with respective performance

F[(x*)=0.00066 (6.6%) for the skyhook implementation. These are the

benchmarks that the obtained solutions should be compared against.
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TABLE 4.5

OPTIMIZATION RESULTS FOR THE DIFFERENT KRIGING CASES AND DESIGN PROBLEM D,

Case (i) AK
Trial X NP Hy () | A(x 1407
1 [690.38 633.95] 7302 0.0099 0.0106
2 [714.14 575.75] 8296 0.0108 0.0106
3 [706.4 626.61] 2721 0.0102 0.0105
4 [725.68 434.08] 2951 0.0133 0.0139
5 [719.1 616.94] 4227 0.0097 0.0105
Case (ii) AKE
Trial X N I:Ik”»g (x") H(x' 1{6°})
1 [700.97 614.99] 7402 0.0108 0.0105
2 [711.71 620.79] 7258 0.0109 0.0105
3 [689.94 649.38] 2728 0.0107 0.0107
4 [735.12 608.86] 6847 0.0113 0.0106
5 [704.11 629.68] 4134 0.0116 0.0105
Case (iii) QK
Trial X NP H () | AKX
1 [694.85 605.67] 5952 0.0098 0.0106
2 [694.86 631.7] 5489 0.0105 0.0106
3 [705.13 596.22] 2717 0.0106 0.0105
4 [712.88 500.24] 2959 0.0096 0.0119
5 [691.94 610.94] 4312 0.0094 0.0106
Case (iv) LK
Trial X NI Hy () | AKX 14°))
1 [928.93 700.96] 11096 0.0465 0.0257
2 [705.83 590.1] 11382 0.0140 0.0106
3 [908.74 994.6] 7990 0.0710 0.0528
4 [784.64 748.48] 6155 0.0210 0.0150
5 [399.66 900.13] 11202 0.0599 0.0569
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TABLE 4.6

OPTIMIZATION RESULTS FOR THE DIFFERENT KRIGING CASES AND DESIGN PROBLEM D,

Case (1) AK

Trial . N H, () A0
1 [1142228578 1281831151] 8817 0.000253 0.000795
2 [12651712 1174;8543? 6607 0.000232 0.000908
3 [116196427 11576205%; 12046 0.000209 0.000733
4 [111235.'1675 1261586322] 3736 0.000200 0.001126
5 1[239214 15;?81] 8698 0.000221 0.000894

Case (ii) AKE

Trial x' NP H () A0}
1 [11;?598 1;?213]9 5721 0.000541 0.000657
2 1[;;9826 15;? 139] 4751 0.000529 0.000634
3 [1155386625 11786826; 5512 0.000590 0.000633
4 [1147735189 1183)38115] 7076 0.000449 0.000640
5 [1177 010323 11874 07 8? 4703 0.000586 0.000624

151

www.manaraa.com



TABLE 4.6 (CONTINUED)

Case (ii1)) QK
Trial X N a, krig &) | H (x"[{0°})
1 [1143045%9 128063)5] 10440 | 0.000255 0.000721
2 [1183287238 123(;50075] 12912 | 0.000357 0.000710
3 [1144(1)30128 127(;21725] 9023 0.000294 0.000718
4 [1142755153 1272436942] 3705 | 0.000381 | 0.0007423
5 [1143771577 126(;21866] 6558 | 0.000274 0.000743
Case (iv) LK
Trial X N A, krig x) | A (x"[10°)
1 [119180793 12766‘;99‘; 19778 | 0.000241 0.001758
2 224285345 128%10145] 19720 | 0.001824 0.002798
3 [125573572 22%30871] 19153 | 0.000024 0.000903
4 [7112?39'5956 21187227.'76] 18763 | 0.000319 0.00119
5 3[2)26323 85;92337] 19591 | 0.001193 0.001908

The discussion will focus initially on the proposed adaptive formulation with
integration of the prediction error (AKE). The results for AKE demonstrate a remarkable

computational efficiency and robustness in converging to the optimal solution. The

identified solution X is always in the vicinity of the benchmark optimum solution, and,

more importantly the attained performance is always comparable to or even better
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than the benchmark performance, and even to the performance reported in the
adaptive IS implementation in Section 3.4.3. This is accomplished with a small number
of model evaluations, not exceeding 7,500 for any design case and trial. Note that the
differences between these trials are well expected since there is a strong dependence of
the optimization approach on the initial conditions (which is the point of difference in
the different trials). Note that there is no dependence of the number of model

evaluations needed for convergence on the dimension of the design vector n_ (actually
convergence for case D, is established with a smaller average computational effort
than case D, ). This is expected since the kriging is formulated in the augmented input

space, which has similar dimensions for both design cases, and thus, there is no direct

impact of n_ on the results. Overall, the reported efficiency corresponds to tremendous

computational savings when compared to the approaches discussed in Section 3,
something that is accomplished primarily through the proposed formulation of the
kriging metamodel in the augmented input space. It should be stressed once again that
there is a constraint on this approach since the dimension of the augmented input space
cannot be excessively large.

Moving now to the accuracy of the kriging implementation (still for AKE)
assessed through the comparison between [:Ik,,.g(x*) and I:I(x*|{90}), there is an

overall good agreement. The differences are significantly bigger for case D,, as

expected, since the skyhook implementation is characterized by greater sensitivity of

the performance/response in the regions of the model parameters, something that
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contributes to ultimately greater challenges for the kriging metamodel. When

comparing the kringig accuracy when the prediction error is not included in the
performance function estimate (comparing [:Ik,,.g(x*) and I:I(x*|{90}) for AK) it is
evident that the explicit consideration of that error provides significantly improved
estimates, i.e. closer values of I:I,Wig(x*) and ﬁ(x* |{0°}) especially for design case D,,
which has the largest associated error and thus impact of that error on the predicted

probabilistic performance. Finally, an under-prediction trend [FAI,{, (x") smaller than

ig
ﬁ(x* |{0°})] is evident in the results, especially when the error is not included in the
probabilistic performance assessment. This is somewhat anticipated since kriging
corresponds to an interpolation/smoothing scheme. Since the performance for both
design cases corresponds to an example in which failure is not common, the smoothing
of the response will contribute to estimates moving toward the non-failure region and
ultimately to a reduced estimate of the fragility of those responses. The prediction error
ultimately circumvents, at least partially, this challenge.

The more interesting comparison is, however, between AKE and the three
alternative approaches (AK/QK/LK) in terms of computational efficiency (comparison of

N for same trial) and more importantly, robustness (comparison of I:I(x* |{0°}) for

same trial). In all instances, it is shown that the other three approaches do not share the

robustness of the proposed AKE implementation, as they converge for some trials to a

suboptimal performance I:I(x* |{0°}). The differences are perhaps more evident for LK
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and secondary for AK. This is an important result; it shows that a space-filling DoE, even
though it might provide a good global accuracy as reported earlier, leads to significant
errors in regions of the model parameters that are of importance for the probabilistic
performance and ultimately to erroneous identified optimal designs. Similarly, ignoring
the prediction error not only decreases the accuracy of the estimated performance as
shown already, but, and perhaps more importantly, can provide erroneous optimal
solutions.

Overall, the study shows potential improved efficiency (reduction of
computational burden) established through the proposed adaptive kriging scheme as it
provides great computational savings and robustness for convergence to the optimal
solution. Some of the key results in this illustrative example are the following:

e By considering a kriging implementation in the augmented input space,
remarkable computational savings are established.

e The proposed hybrid DoE for a targeted region greatly enhances the accuracy of
the kriging implementation and its ability to avoid converging to suboptimal
solutions. This can be established simply by sharing information across the
iterations of the optimization algorithm, with a small additional computational
burden.

e Explicitly incorporating the prediction error not only improves the accuracy of
the estimated objective function through the kriging metamodel but also
supports a more robust optimization (avoid convergence to suboptimal

solutions).
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e The adaptive selection of basis functions provides a smaller advantage when
compared to the other advances considered here.

e For the cross-validation of the kriging metamodel, there is a need for methods
that, with small computational burden, provide weighted error statistics. Such
weights need to stress the importance of getting accurate estimates in regions in
the model parameter space that contribute more to the probabilistic

performance.

4.6 Summary

In this chapter, adaptive implementation of kriging metamodeling was
considered to reduce the computational burden associated with optimization under
uncertainty problems adopting stochastic simulation. Two important aspects for tuning
of the kriging metamodel were adaptively addressed within this implementation: design
of experiments (DoE) for selecting support points aimed at improving the accuracy of a
targeted region, the one contributing most to the probabilistic performance, and
selection of the order of basis functions for the different inputs of the metamodel.
Additionally, a novel implementation was introduced, formulating the kriging
metamodel in the augmented model parameter and design variable space, and the
prediction error from the kriging metamodel was explicitly considered within the
evaluation of the probabilistic performance. Althrough kriging has been considered
before for approximating the system response with respect to the uncertain model

parameters within RBDO problems, no attention has been given in generalized
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optimization under uncertainty problems or to the formulation of metamodels in an
augmented input space. As such, the proposed enhancements constitute significant
advances in this field.

By considering the augmented space, higher efficiency can be achieved. The
system response is simultaneously approximated with respect to both the model
parameters and the design variables, where the latter are considered to belong to some
trust region, and the same metamodel is used for all evaluations of the objective
function (for specific design variable values) while the search is constrained within this
trust region. Only new model evaluations are necessary when the search reaches the
boundary of this region, whereas the overlapping support points (between the trust
regions in subsequent iterations) are maintained to improve accuracy.

For the design of experiments, a hybrid approach was proposed for the model
parameters, combining a space-filling first stage (Latin hypercube was considered for
this purpose) and a second stage targeting the region that has larger contributions to
the probabilistic performance. The latter was approximated through samples from the
integrand (corresponding to this performance) obtained using readily available
information from the previous iteration of the optimization algorithm (no additional
computational burden involved). The selection of the order of the basis functions was
also adaptively addressed by integrating the global sensitivity analysis introduced in
Section 2.4.4. Higher order basis functions were considered only for the parameters that
were identified to have higher importance, and the sensitivity analysis was integrated in

the proposed framework, again utilizing readily available information.
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The illustrative example showed the computational efficiency (convergence with
small number of evaluations of the system model) as well as robustness (convergence to
solutions that are close to the true optimum) established through the proposed
adaptive kriging implementation, especially from the adaptive DoE. It was also shown
that incorporating the kriging prediction error in the performance function estimate can
greatly improve the accuracy of the probabilistic performance estimates as well as the

robustness of the optimization algorithm itself.
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CHAPTER 5:
PROBABILITY OF DOMINANCE AS ROBUSTNESS MEASURE FOR ASSESSING

APPROPRIATENESS OF ROBUST DESIGN OPTIMIZATION SOLUTIONS

This chapter considers the appropriateness of different candidate designs within
an RDO formulation. Toward this goal, a new robustness measure, termed probability of
dominance, is introduced. Rather than utilizing resultant statistical measures (i.e. mean
and standard deviation) or comparing each design to an established benchmark (utopia
point), the probability of dominance compares simultaneously the entire candidate set
and examines the favorability of the design for all different model parameter values. It is
defined as the likelihood that the performance of a design will outperform all other
designs in the set. A multi-stage implementation is also proposed that facilitates
increased robustness in the selection by considering the comparison among smaller
subsets within the initial larger set of candidate designs. The impact of prediction errors
between the real system and the assumed numerical model is also addressed. This
extends to proper modeling of the prediction error influence, including selection of a
probability model for it, as well as its impact on the probability of dominance and on the
RDO formulation. Two different error models are considered, corresponding to either

additive or multiplicative influence of the prediction error, and comparisons are drawn
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between them. The correlation between the errors for different design configurations is
also explored.

The characteristics of the RDO formulation have been already introduced in
Section 2.3. In the following section, the probability of dominance and the multi-stage
formulation are discussed. Subsequently, the prediction error and its impact in both the
probability of dominance and the RDO designs are examined. Lastly, two illustrative
examples are presented. The first one considers the design of a tuned mass damper
(TMD) for vibration mitigation under harmonic excitations and the second one a
topology optimization problem of minimum compliance. Extensive comparisons are
discussed in these two examples, with some emphasis on the influence of the prediction
error on the robustness traits of the obtained solutions.

The nomenclature specific to this chapter is reviewed in Table 5.1.
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TABLE 5.1

RELEVANT NOMENCLATURE FOR CHAPTER 5

r Set of candidate designs d Dimension of subsets of I

Decay rate for exponential h (%) Performance function for real
correlation function y model

Indicator function for dominance

Ir,,0
#(X) | Mean for system model (I';.8) of X, against set I' and given 0

[z o] |Utopi it f ; del (Subscript) characteristic
opia point for system mode .
Ho o Prap Y k associated with the k" design

Weight for defining norm for Margin of dominance for design

. . o d
: exponential correlation K| x, within set S

Correlation function for the
Py prediction errors associated with m Number of designs in T’
designs X, and X,

Covariance matrix for vector of

5 the difference between error for p r Probability of dominance of
H k™ design and errors from each p(X, 1) design X, overset '
of the designs in S}
Standard deviation for system A Probability of dominance
o(x P r
(x) model > [ T) calculated through MCS
o Standard deviation for n(e) Probability model for prediction
€ prediction error error
W Parameter associated with 5 Set of all possible d -
prediction error variance dimensional subsets of I
o J Set of d -dimensional subsets of
e Prediction error S, . . .
I' including design X,
= Natural logarithm of prediction g I" subset of d -dimensional
error ¥ |subsets of I' including design X,
D, Threshold for dominance . (Subscript) value for real system
D (x) Degree of dominance of design " Weight used in the RDO
4377 X, for d -dimensional subsets formulation
Vector of the difference
., between performance value for " n o ,
Dy 8) k™ design and performance for X J" design within the 5y, set
each of the designsin S}
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5.1 Probability of Dominance

5.1.1 Definition

Recall that RDO can lead to different candidate designs, establishing a different
compromise between the different objectives (minimization of mean and standard
deviation of response). Assume I'={x,; d=1,---,n,} to correspond to a set of such

candidate designs and consider the task of quantifying the appropriateness of these

designs. The explicit notation * to denote optimal design for x is not used hereafter
since the method can in principal be used for any set of candidate designs.

A new measure, termed probability of dominance, is introduced for assessment
of this appropriateness. This robust measure is defined as the likelihood of candidate
design X, to outperform its rival designs within I' under probability model p(0) for the
uncertain model parameters. It should be noted that this definition is independent of
the design formulation for obtaining the candidate design configurations, i.e. it can be
extended to other types of optimization under uncertainty applications beyond RDO

problems. Based on the total probability theorem, this probability of dominance P, is
given by

Py(x, IT) = | P,(x, I T,0) p(6)db, (5.1)
where F,(x, |I,0) stands for the probability of dominance given the model

configuration @ and is equal to the probability that the k" design will outperform all

other designs. Dominance is, thus, probabilistically attained when a particular design x,
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has a better performance /4(x,0) relative to other designs under a specific realization of

the uncertain parameters0 .

Assuming that a smaller performance is preferable, we have

PD(X,‘|F,9)=P{ h (h(xk,9)<h(xm,9))}. (5.2)

m=1, m#k
In the case that no prediction error is assumed for the model (the case with prediction

error will be addressed later), this is also given by

nm

Pl ) h(xk,9)<h(xm,9)}:P[h(xk,e): min (h(xm,ﬂ))}. (5.3)

sl
m=1, m#k seeeslly

and it finally corresponds to the indicator function

1
P,(x,|T,0)=I(T,,0)=+ " : (5.4)
0 otherwise

with the notation /(I',,0) used to symbolize the indicator function for the dominance

of design £ among the designsinset I'".
The high-dimensional probability integral in (5.1) can be readily calculated
through stochastic (Monte Carlo) simulation (similar to the ideas discussed in Section

2.2 for the objective function), leading to
R 1 & _
PD(Xk |F):ﬁZPD(Xk |1"’9J)’ (55)
j=l

where the N samples for 8, with @’ denoting the jth sample, are simulated from
distribution p(0). Since we are ultimately interested in the dominant design,
corresponding to a high probability, it is anticipated that this approach will yield
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satisfactorily results (adequate accuracy) without significant computational burden
(necessity to select high values for N ). The accuracy of the estimation can be assessed

through the coefficient of variation of the estimator (Robert and Casella 2004).

5.1.2 Multistage Implementation

The probability of dominance can be viewed as a weighted measure of the
hyper-volume of the region over ® where a particular design has a performance that is
the best among the candidate designs, the weight provided by the relative likelihood

p(0) of the model parameters 6 within ® . The dominant design is selected as the one
corresponding to the maximum P, (x, |I),

X, =argmax P,(x, |I). (5.6)
k

An advantage of this measure is that it is independent of the design process,
which allows application to any arbitrary group of designs. However, a caveat of the
approach is the fact that the result is a function of the exact designs contained in the set
I', with the final outcome potentially changing even when non-dominant designs are
introduced (or removed) into the set of candidate designs. This can happen if the new
design only dominates (that is, provides better performance) in regions of the uncertain
space that the previous best design used to dominate, thus detracting from the
favorability of the previously dominant design only (and not of any other designs). This
may ultimately switch the preference without this new design emerging as the new

dominant one.
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To circumvent this challenge and provide enhanced robustness in the choice of a
most appropriate design, a multi-stage formulation is developed. Rather than looking at
the dominance over the entire set I", the dominance within d -dimensional subsets of
I' containing d total designs is considered (simplest choice for d is 2). A design is then

termed as d -dominant if it is the dominant one within the 7, different d -dimensional

subsets that include it. To formalize these ideas, we denote as S the set of d -

dimensional subsets of d and as S,f the set of d -dimensional subsets including design
X, and use subscript / to distinguish between the different elements of these sets (so
S,d denotes the [” subset of I" containing d designs). For instance, ifI" = {4, B,C, D},
then S ={[C 4],[C B],[C D]} (three candidate sets including two designs that have
C as a member), Sé ={[C 4 B],[C A D]} (two candidate sets including three designs
that have C as a member) and S° ={[C 4 B],[C A D],[D AB], } (three candidate sets

including three total designs). The probability of dominance over subset S,f, is then

Py(x,|8i) = [ Py(x, |S1,0)p(8)d0 = | P ﬂ (7(x;,0) < h(x;",0)) | p(0)d0, (5.7)

m=1,m=i

dlk
m

where x? denotes the m” design within the S,f[ set. This probability can be evaluated

through stochastic simulation as in Eq. (5.5), employing Eq.(5.4) to describe the

probability function within the integrand. The transformed equations are

~ 1 N .
By(x, 1S5 =—> P,(x, 5,0, (5.8)
N5
with
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m 2

Py(x, |SIZ99):I(SI§=0): . (5.9)
0 otherwise

I ifh(x,,0)= min (h(x)*,0))

The design X, is dominant within the set Skd, if it has the largest probability of
dominance within the set, and it is considered to be d -dominant if it dominates each

subset within S,f. To quantify these notions, the margin of dominance between a

particular design X, and the rest of the designs within set S,f[ is defined as

Mjy=Py(x, |Si)— max Py(x, |Sp), (5.10)
while the degree of dominance is defined as
Dd(xk):lflnin M. (5.11)

The margin of dominance is defined as the difference between the probability of
dominance for x, compared to the design among the remaining designs in S,f, that has
the highest probability of dominance. Positive values for this margin correspond to
dominance of X, in subset S . The degree of dominance corresponds to the minimum
of the margin of dominance for x, among all subsets that include it. A positive value for
it corresponds to d -dimensional dominance for X, . Nonetheless, it can be the case that

no design emerges as dominant. In the previously discussed example, this will happen
for the two-dimensional (d =2) comparisons if 4 dominates B and D, but is
dominated by C, and C is dominated at least by B. If, on the other hand, 4
dominates B,C, and D (always within the context of individual comparisons), then 4

is the dominant design for the d =2 dimensional subsets.
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The overall preferred design should be taken as the one that is dominant within
the lowest possible d -dimensional subsets considered. This does not necessarily mean
that the chosen design will be dominant for higher values of d -dimensional subsets,
but it exhibits the most robust dominance characteristics for the set I' . For example,
assume that a candidate design exhibits d =2 dimensional dominance; then if some
other design is removed from I', the candidate design will still enjoy the dominance
property. If an additional design is added, then if the older dominant design
outperforms the newly added, it will also maintain its d =2 dimensional dominance.
Further robustness characteristics can be established by also considering the degree of

dominance and establishing a minimum threshold D, , i.e. design can be considered as
dominant only if D,(x,)>D,.

Note that for all the computations required to identify the dominant design, the
same sample set @’ can be used. As such, the performance function evaluations (which
could be computationally intensive for complex models) used in the estimation of Eq.
(5.8) can be the same ones used for Eq. (5.5); thus, only performance comparisons are
needed (not re-computation of the performance). Furthermore, to reduce the overall
burden, the results from the comparison within the set I" can be used to guide the
priority of comparisons; designs for which F,(x, |I') is small are not expected to
dominate within any considered d -dimensional set and can be given lower priority in

the comparisons.
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Finally, the computational framework for identifying the dominant design within

set '={x,; i=1,---,n,}is the following:
Step 1: Generate a set of N samples {8’} from p(8’) and evaluate the performance

for each one to obtain the set {A(x,,0’); k=1,---,n ;

m?

j=1--- N}, if it is not
readily available from the optimization stage.

Step 2: Calculate the probability of dominance for entire set I' for each design

k=1,---,n, by Eq. (5.8) utilizing the performance function evaluations from Step
1. Re-order the designs based on their dominance F,(x,|I') to obtain set
{x.; ¢=1,---,n,}, and ignore any designs as deemed appropriate.

Step 3: Set d =2 and start the comparison from the smallest possible subset class.

Step 4: Set ¢ =1 and start by considering the most dominant design based on the values
of B,(x, |T).

Step 5: For all subsets in Sf, including Xx_, estimate the probability of dominance for all
designs included in it {P,(x,, |Sf,);l=1,...,nm,m=1,..,d} using approximation
Eqg. (5.8), calculated through the readily available performance function
evaluations from Step 1. For the first subset comparisons (when d =2), this
corresponds to comparison of a pair of designs, and the probability of
dominances for the compared designs are complimentary.

Step 6: Calculate the margin of dominance with Eq. (5.10) and the degree of dominance

with Eq. (5.11). If the latter is greater than zero (or the chosen threshold D)), x,
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is the overall dominant design, and the process can stop. Else, set ¢ =c+1 and

go back to Step 5, understanding that a lot of the necessary probabilities

P (x, |S(d+1),) have already been computed (when considering the smaller

valuedc’s). Perform Step 5 for the new x, only if it could emerge as a dominant
one, meaning if it has not yet been dominated by any of the previously
considered designs.

Step 7: If all designs have been examined, i.e. ¢ =n_, and no dominant design has been

m7’

identified for the d-dimensional subsets, set d =d +1 and go back to Step 4.

Through this approach, the design exhibiting the lowest possible d -dimensional
dominance is readily identified. As will be illustrated later, this frequently (but not
necessarily always) corresponds to 2 -dimensional dominance and to a design having a
large associated value of P,(x, |I"). This design is guaranteed to outperform all other
designs within the considered class of candidate designs and is the approach advocated
here for selecting the preferred design among T". The degree of dominance D,(.) can
be further used to evaluate the preference among different designs, even those that are

non-dominant. The process will be illustrated in the examples considered later.

5.2 Impact of the prediction error on the Probability of Dominance
The previous section assumed no error between the response of the actual

system, denoted /% (x) herein, and that of its assumed model, 4(x,0) [in other words, it
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was assumed that 2 (x) = /(x,0)]. The notation / (x)is used to stress the fact that the
real system is dependent on the exact design selection x, and its performance is
independent of the numerical model assumed and thus of 0 (although 0 is obviously

related to the system properties). This assumption, i.e. A (x) = A(x,0), is the reason why

the probability P, (x, | S{,0) ultimately corresponds to the indicator function (S;,0)

in the analysis discussed in Section 5.1.1.

In any engineering application, the adopted model cannot describe exactly the
behavior of the actual system (Beck 2010); a prediction error always exists, and its
incorporation in probabilistic analysis can have an impact on the design choices
(Taflanidis and Beck 2010). This was illustrated in the definition of the probabilistic
performance in the example considered in Chapters 3 and 4.

This error e will be taken here to directly quantify the difference between 4 (x)
and A(x,0) (note that in Chapters 3 and 4, the error in the system response vector was
considered, and the error in 4(x,0) needs to be generally addressed in this chapter).
Since this error is unknown, it can be probabilistically described by assigning a
probability density function p(e) for it (Taflanidis and Beck 2010), treating it like any

other uncertain model parameter. This prediction error can be viewed as describing (a)
un-modeled characteristics of the system model or (b) un-modeled uncertainties for 0
(Beck and Taflanidis 2013; Beck 2010). In this section, the influence of this error on the
probability of dominance, as well as on the actual formulation of the RDO problem, will
be investigated. The two most common error models will be considered for the impact
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of the error; these are either additive or multiplicative influence on A(x,0).

Furthermore, the assumption that e is independent of 0 will be utilized (this ultimately

means independence between p(e), or equivalently /(x,0), and e). The latter

assumption introduces the largest amount of uncertainty in the problem formulation
(Jaynes 2003; Taflanidis and Beck 2010) and is the reason adopted here (establishing a
greater robustness), as it assumes the least amount of information imposed upon the

problem description.

5.2.1 Correlation of Errors between Designs
Before moving forward, the correlation between errors for different design

selections needs to be addressed, as this correlation is important in assessing the
probability PD(xk\S,j,ﬂ). This correlation is expected to depend on the distance
between x, and X, ; if the two designs are very similar, any prediction errors for the

system numerical model are expected to be the same for both of them since the system

models examined (under design configurations X, and X, ) are similar. Note that

assuming no correlation introduces the largest amount of uncertainty in the problem
formulation, but in this case, this is not a reasonable choice. In the example considered

later, an exponential function is assumed for the correlation coefficient p,, between

designs k£ and m given by
Pin =eXp(=2 1%, =X, 1) = exz{—/lzvlg(xki - xml-)z} (5.12)
i=1
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where || X, —X stands for the weighted Euclidean norm with v, weight for each

m Il
component of vector x, while 1 is the assumed decay rate of the exponential function.
Exact selection of these terms is discussed in the examples later.

It should be stressed that, even though the use of exponential functions to
describe correlation is very popular in engineering applications (Lophaven et al. 2002a),
this choice is ultimately ad-hoc (especially due to the dependence on the chosen norm
and decay rate A ), and if more information is available for the prediction error and its
relationship to the design configuration, some different correlation structure can be
adopted (Papadimitriou and Lombaert 2012) (note that this type of information is
normally not available in most practical engineering problems).

For the analysis in this section, a correlation coefficient p,,, between designs is

assumed to be defined by the designer through any appropriate method chosen
(Papadimitriou and Lombaert 2012), whereas in the examples, the impact of this
correlation on the final design choice is examined using the correlation function in
Eq.(5.12). Next, the different modeling choices for the prediction error and their impact

on the probability of dominance are discussed.

5.2.2 Additive Prediction Error
The most commonly used assumption for the prediction error is an additive
influence (this agrees with the assumption commonly used for Bayesian system
identification applications (Beck and Taflanidis 2013)), leading to
h(x)=h(x,0)+e. (5.13)
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The mean for the system model is updated as
w1, (x) = E[h(x)] = E[h(x,0) + e] = E[A(x,0)] + E[e] = E[h(x,0)] = p(x), (5.14)
where E[e] is taken equal to zero in order to establish unbiased predictions. Similarly,

the variance is transformed to

o, (x) = E[h} (x)] - 4 (x) = E[(h(x,0) + &)’ ] - 1’ (%),
= E[h(x,0)°]+2E[h(x,0) e]+ E[’] - 1’ (),
= (E[h(x,0)*] - 1*(x)) + E[e’ ]+ 2E[h(x,0) ]E[e],

=o’(xX)+ E[’]=c’(x)+ 07,

e

(5.15)

where of is the variance of the prediction error and for the second-to-last equality, the
independence between e and #/(x,0) was utilized. These equations show that to
characterize the statistics of interest, knowledge of only the mean and variance of the
error is necessary. Therefore, to establish unbiased predictions, the mean needs to be
zero. This also agrees with modeling intuition; the error in Eq. (5.13) should be zero
mean (the opposite would indicate a consistent bias in the predictions of the numerical
model). Thus, the minimum additional information needed to quantify the error

statistically is its variance. Based on this information, the probability model for p(e) is
chosen as Gaussian with zero mean and variance o~. This Gaussian model is the
probability model that maximizes the entropy, or equivalently, it incorporates the
largest amount of uncertainty in the definition of p(e), assuming that only its mean and

variance are known (Jaynes 2003), and is the reason why it is chosen.

Therefore, the only remaining question for the complete description of p(e) is:

how should its variance be defined? Note that based on Eq. (5.13), the error in this case
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(and so its variance) has the same units as the performance function. Rather than
choosing the variance to be constant in the design space, a reasonable assumption is to
take the error statistics to be dependent upon the statistic of the system model. If the
error is assumed to represent un-modeled uncertainties, o should be set as a fraction
of the variance of the system model.
ol =y’o’(x), (5.16)
where  is a proportionality constant. Note that this constant will typically have a
small value since the error is expected to be small (at least if the engineering model
predictions are expected to be close to the real system behavior). Through Eq. (5.16),
the error statistics are scaled based on the variability observed for the system model
and stemming from the uncertainty in 0 ; if that variability is small, so will be the error,
showing that in fact the error does primarily address un-modeled uncertainties. If, on
the other hand, the error is taken to also represent un-modeled characteristics of the
system, a more reasonable assumption is to select it proportional to the second
moment of the response, scaling the overall magnitude of the response.
o2 =y E[h(x,0)"] =y *c” (x) + 13 (). (5.17)
The latter component in Eq.(5.17), i.e.y’ 1 (X), can be considered to address the un-
modeled characteristics of the real system, with the first component representing the
un-modeled uncertainties. Both these assumptions ultimately lead to an error variance

that is dependent upon the design configuration Gf = J: (x) . Modeling assumption Eq.
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(5.16) will be referred to hereafter as variability-proportional and modeling assumption
Eqg. (5.17) as moment-proportional.

Once the error has been defined, the important question is how to incorporate it

in the analysis for the probability of dominance; In other words, how is P,(x; |S;,0)

modified by considering the influence of the prediction error? In this case, P,(x, | S9,0)

is expressed with respect to the real system behavior,

d

Py(x, | S51,0) =P{ N (A0 <h(xi) |e}, (5.18)

m=1,m#i
and utilizing Eq. (5.13) to introduce the impact of the prediction error, Eq. (5.18) is

transformed to

P ﬁ (h(x,)<h/(x,))| 0} = P{ ﬁ (h(x,.0)te, <h(x, .0)te, )}, (5.19)

m=1,m#i =l,m#i

where the superscript dik is omitted herein for notational simplicity and a subscript is
used for e to denote the design configuration to which each error term corresponds.

This then leads to

P ﬁ (h(x,.0)te, < h(x,.0)+e, )} = P{ ﬁ (e, —e, <h(x,.0) -h(xk,ﬁ))},

m=1,m#i
€ —€ h(Xl,G)-h(Xk,ﬂ)

_p G e | h(x,,0) - h(x,.0)

(5.20)

€ —¢€ h(Xd 99) - h(xk 99)
where the different inequalities in the latter expression are examined component-wise.

Considering now the vector
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€ — €

e —e
AR (5.21)

€ —¢€
and based on the assumed probability model for each of the error terms, it follows a
Gaussian distribution with zero mean and covariance matrix with elements (Johnson

and Wichern 2002) (the m™ and q'h entry is presented below)

El(e,—e,)(e, —¢)] = Ele}]- Elee,]-Ele,e. ]+ Ele,e,], (5.22)
= U:k - Uekaeqpkq - O-ekaempmk + Uemaeqpmq’

where a subscript is used to denote the relationship of the error standard deviation to
the design configuration since such a relationship has been introduced based on Eq.
(5.16) or Eq. (5.17). For the diagonal elements of the covariance matrix, this relationship
simplifies to
El(e,—e, ) 1=0. +0., —20,,0. Pu- (5.23)
Since the probability model for the error vector in Eq. (5.21) is known, the
probability in Eq. (5.20) corresponds to the associated cumulative distribution function
(CDF). This eventually leads to
Py(x, |SZ[’0):FG [Dhg(ﬂ)’oizzl:l’ (5.24)
and probability of dominance given by

Py(x, ISi) = [ Fu[ Dh;y(8),0,%, | p(6)db, (5.25)
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where Fg [Dh,j(ﬂ),O,ZZJ stands for the CDF of the multivariate Gaussian distribution

with zero mean, and covariance matrix X{, with elements Eq. (5.22) obtained by

comparing the error for the k" design to the error of each other element of S,fl. This
CDF is centered and evaluated at the vector of differences between the performances of
each of these designs to the performance of the k" design (recall this vector does not
include the k" design), given by

h(x",0)-h(x,.0)

h(x%.0)-h(x,,0)
Dh!(0) = 2 .

(5.26)
h(x%" ,B;L h(x,,9)

The introduction of the prediction error leads to modification of the initial
indicator function, which was imposing a binary distinction for the system performance
(either dominates or not), to a preference function. This function is expressed as the
likelihood of dominance based on the difference between the performance of the

design of interest and the performance of the other designs under consideration given
by Eqg. (5.26), as well as the statistics of the prediction error, introduced through the
covariance matrix Zi,. Note that this ultimately corresponds to analytical integration
over the prediction error on the initial probabilistic integral Eq. (5.18). Figure 5.1
illustrates this concept for a two-dimensional example (comparison of two designs). It is
evident that increasing the prediction error variance (equivalent in this case to

increasing ) provides a smoother transition between the two extreme cases, as the

amount of uncertainty in the system description increases (reducing the confidence in
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assessing the real-system dominance when knowing the dominance characteristics for

the model).

Computationally, the probability of dominance with the prediction error can still
be evaluated by Monte Carlo simulation as in Eq. (5.8) substituting P,(x, | S;,0’) with
F. [Dh,f,(()j),O,ZZ,] The latter multivariate CDF can be estimated by any standard

numerical approach. In the example later, the highly efficient algorithm proposed by

Genz is adopted (Genz 1992). For assessing the dominance over the entire set, the

approach is the same as above and simply needs to utilize " instead ofS;[ .

Irp :\/O-ezk"'o-; —-20,0, Py ST T e
P,(x,]4,0) s
0.8¢ B values ! S ]
0 L4, 0) /-
0.6r --—------ 0.02 / i
S 0.05 ;
04r ——0—.— 0.1 /”' i
S
.......................... 0'2 S ;:
02 r /_./ .r' ,' _
| - A=ix)
-0.6 -04 -0.2 0 0.2 04 0.6

h(x,0)- h(x,.0)

Figure 5.1 Likelihood function for comparison of x, against

A={x,} for different values of #° =0’ +0’. -20,0,p0,

5.2.3 Multiplicative Prediction Error

Modeling prediction errors through a multiplicative assumption is also common
in the engineering literature (Taflanidis et al. 2013; Porter et al. 2007), especially for

performance functions that must take strictly positive values (note that this was the
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case considered in the example in Sections 3 and 4 for quantifying the probabilistic
performance). The relationship between system and model performance in this case is

h(x) =h(x,0)-e, (5.27)
with e > 0 corresponding to a dimensionless quantity. This modeling assumption for the
prediction error addresses both un-modeled uncertainties and un-modeled
characteristics in the numerical model since it directly scales the entire performance
function (the option of addressing only un-model uncertainties does not exist here). The
mean and variance for the real system, respectively, are

#,(x) = E[h (x)] = E[h(x,0) - e] = E[h(X,0)]- E[e] = E[A(x,0)] = s(x),  (5.28)

o (x) = E[h ()] - ] (x) = E[(h(x,8) €)*]— 1’ (x) = E[h(x,0)"] E[¢"] - 4’ (%), (5.29)
= o’ (x) + E[h(x,0)’]( E[e’]-1) = o° (x) + E[h(x,0)’] 5, '
where E[e] is taken equal to one in order to establish unbiased predictions and the

independence between ¢ and 6 was used in the third equality in both relationships.
Similarl to the case of additive prediction error, only the mean and variance of the error
are necessary to determine the statistics of interest for the real system behavior.
Therefore, to establish unbiased predictions, the mean of the error needs to be one.
Since in this case the error e is dimensionless and directly scales the model

performance, its variance should be independent of the characteristics of the model, so
it is assumed to be O'f =l//2, with  typically having a small value (similar justification
as for additive error). Note that for the same value of /, there is an equivalence for the

statistics of the real-system response between the multiplicative error and the additive
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error with moment-proportional variance modeled through Eq. (5.17). This is consistent
also with the fact that both of these cases address both (i) un-modeled uncertainties
and (ii) un-modeled system characteristics.
Furthermore, taking the log of Eq. (5.27), we have
In(h,(x)) = In(h(x,0)) +In(e), (5.30)
which means then that the /og(e) has an additive influence on the log of the

performance. Based on this observation, the common assumption for the multiplicative
prediction error probability model is a lognormal distribution. This also agrees with the
most appropriate model based on the maximum entropy principle if the available
knowledge is assumed to be on the log of the error (rather than the error itself) to

circumvent the e >0 constraint. This means that e =/og(e) follows a Gaussian
distribution with mean and variance

 =—0/2,
He =70 (5.31)

ol =In(c’ +) = o’

where the approximation in the second equation is established assuming that 0: is
small and the first equality is necessary so that E[e]=1.

The modification for P,(x;|S;,0) is in this case

m=1,m#i

Px, 1550 =P ) (hs(xk><hs(x:ffk>)|e},

m=1,m#i

=P| ) (log(hs(xk))<log(hs(xi”‘)))lﬁ}, (5.32)

d

=P| N (log(h<xk,e>+sk)<log<h<x:i’k,9>+8fk))'9}’

m=1,m#i
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which is then analyzed in a similar way to the additive error since e =log(e) is Gaussian,
leading to

P,(x, | 54,8) = Fy | DI;i(0),0,Zj, |, (5.33)
where DI%(0) is the vector of the difference between the logarithms of the

performance

log(h(x{",0))-log(h(x,.0)) | | log(h(x".0)/h(x,.0))
log(h(x3",0)) - log(h(x,.0)) | _| log(h(x5",0)/h(x,.0))

DI (0) = , (5.34)
log(h(x2*,0)) - log(h(x,.8)) | | log(h(x2".8)/A(x,.8))
and the covariance matrix £{, has elements

where p, is the correlation between e, =log(e,) and e, 6 =In(e,), which can be

readily obtained based on the correlation of ¢, and e, (Law et al. 1991), through

ln(1+pkmo-5) 02
) = —e: 5'36

where the assumption that o is small was used for the approximation in the second
equality.

Thus, the evaluation under the impact of multiplicative error follows exactly the
same approach as for the additive error, simply by replacing the CDF in Eq. (5.24) with a

similar CDF given by Eq. (5.33).
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5.2.4 Impact of Prediction Error on the RDO Formulation
Beyond the impact on the probability of dominance, the influence of the
prediction error on the RDO designs can also be examined. In the objective function Eq.

(2.12), the statistics of the real system are substituted, leading to

Ho ()= (1—w) ) 00 (5.37)
sn US” !

with [x, o, ] corresponding to the new normalization, selected based on the utopia
point for the real system [ o, ]. For multiplicative prediction error or for additive

prediction error with the scaled moment-proportional variance of Eq. (5.17) this leads to

px) W\/az(x) + E[h(x,0)’ 1y

(o)
ILlSU NY (5_38)

1wy 00 VBTG 0)N (1 y) = (1)

(o2 ’

s N

Hppo(x)=(1-w)

with 1 = , o # o, . For the additive error with the scaling of Eq. (5.16), the new

objective function is

HRDO(X):(I—W)&X)jtw@\/IHyZ — (1w, o) (5.39)
O-SO /’Io 60 ’

N

with u,=u , o, =+1+w’c,, and thus, it remains identical to the objective function

with respect to the system-model performance Eq. (2.12) as long as the standard

deviation is scaled with respect to the new utopia point. Note that as mentioned earlier,
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the expressions of the additive error with moment scaling and the multiplicative error

yield the same model variance.

5.2.5 Summary for modeling/impact of the prediction error

This section addressed the influence of the model prediction error on the
probability of dominance as well as on the RDO formulation. The modeling of this error
was also extensively discussed, and various reasonable modeling assumptions were
presented, the most important being that the adopted numerical model for the system
provides unbiased predictions for the expected performance. Additive and
multiplicative impacts of the error were considered, and the assumed probability
models were suggested to be (i) Gaussian with zero mean and variance scaled according
to the statistics of the numerical model and (ii) lognormal with mean unity and a
constant variance (independent of the model statistics). The additive prediction error
can possibly be chosen to address only un-modeled uncertainties, with its variance
scaled according to the response variance of the assumed numerical model (because of
the modeled uncertainties@ . In this case, the formulation of the RDO problem is not
impacted at all. The additive error can also be selected to address both un-modeled
uncertainties and un-modeled system characteristics, with its variance scaled according
to the second moment of the numerical model. This is equivalent to the multiplicative
prediction error in terms of how it impacts the statistics of the real system performance

and ultimately the RDO formulation.
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Lastly, the impact of the modeling error on the probability of dominance can be
readily addressed by substituting the indicator function describing the favorability of the
design given the system model with a likelihood function dependent upon the assumed

probability model of the error and the model performance.

5.3 lllustrative Examples

The proposed framework is now illustrated with two examples for which RDO
formulations are very popular in the literature (this is the motivation for using a
different example in this section, as opposed to the one discussed in the previous two
sections). The first example considers the design of a tuned mass damper (TMD) for
vibration mitigation of harmonic excitations, and extensive comparisons are established
for a variety of different cases. These cases mainly vary in the probability models utilized

for p(@) and the error assumption. The second example discusses the topology

optimization problem for minimum compliance, and the discussion focuses only on

specific cases of interest.

5.3.1 Case Study: Tuned Mass Damper (TMD) Design

5.3.1.1 TMD Simulation Model
Tuned mass dampers (TMDs) are widely used to mitigate vibrations for a variety
of different structural systems (Chang 1999; Kareem and Kline 1995; Kwon and Park

2004). They consist (as seen in Figure 5.2) of a secondary mass m, connected to the
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primary mass through a spring with stiffness £ =a)§mS and a dashpot with damping
coefficient ¢, =24 ,w,m,, where w, represents the damper’s natural frequency and ¢,

its damping ratio. Through the proper tuning of these two design variables (stiffness and
damping), significant reduction of the response can be achieved for a variety of dynamic

environmental excitations.

— 1) iy L
m y (ms +md)ys +mdyd +Csys +ksys :Ff(t)

S

m,y,+m,y,+c,y,+k,y,=0

/

Figure 5.2 Schematic of single-degree-of-freedom system with
tuned mass damper. The equation of motion is also shown.

The RDO of TMDs has been discussed in the literature (Marano et al. 2008;
Mohtat and Dehghan-Niri 2011; Mohtat and Dehghan-Niri 2011; Zang et al. 2005). Here
the design of a TMD to mitigate the vibrations of a bridge structure, modeled as a
single-degree-of-freedom (SDOF) system under harmonic (monochromatic) excitation is

examined, similar to the problem discussed in (Zang et al. 2005). Figure 5.2 shows the

details of a SDOF system with massm,, stiffnessk, =w’m , and damping coefficient
¢, =2¢ . om_ (where @ represents the natural frequency and £, the damping ratio),
equipped with a TMD, under the impact of dynamic excitation F}.(t). The mass of the

damper m, is taken as 0.5% of the median (i.e., nominal) mass of the structure. The
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design variables correspond to the damper stiffness and damping coefficient

x=[k, c,]". The uncertain model parameters correspond to the mass, stiffness, and
damping ratio of the structure, 0=[m, k, ¢ ]". For all of these, independent
lognormal distributions are assumed with coefficients of variation y,and median values

17500 Kg for m, 3 MN/m for k, and 3% for ¢.. Two cases are considered for y,,

representing different levels of assumed uncertainty in 0, the first corresponding to a
30% coefficient of variation and the second to a 10% coefficient of variation. These
cases will be termed large variability and small variability, respectively.

The performance function is taken as the maximum of the amplification factor,
corresponding to the maximum of the dynamic response for a monochromatic

excitation over every potential frequency @. This ultimately leads to (Chang 1999)

2_ g2 1 (20.0,.8.)
Hx,6) = max \/[‘/’/ ﬂf]:( id(pfﬁf) L= p =
/ E’+D; @, @,
E, =[1-B1l9; - B;1-4¢.C.0, 8] — 1o; B; (5.40)
D, =2B8.{¢ [9] - B+ 11-(+w) B} 1S 0, ) :

where the auxiliary variables ¢, and ﬂf correspond to the tuning ratio for the damper

and the non-dimensional excitation frequency, respectively, while x=m_/m, is

defined as the mass ratio.
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5.3.1.2 Results and Discussion

The RDO weight parameter w is varied from 0 to 1 with higher emphasis on
lower weight values, w=[0,0.1,0.2,0.3,0.4,0.6,1] (this creates a balanced Pareto front
as will be shown later), leading ultimately to seven different designs configurations. The
statistics needed for the objective function evaluation are calculated using stochastic
simulation as in Egs. (2.4) and (2.7). The total number of samples to generate the RDO
designs was taken as N, =2000, and an exterior sampling approach is adopted as
discussed in Chapter 2, using the same samples over the entire optimization procedure,
thus transforming the RDO Eq. (2.11) into a standard deterministic optimization
problem that can be solved by any numerical optimization approach; for this case, the
design domain is discretized with small intervals and an exhaustive search was

employed. The upper bounds of the design space X are selected as
k, =[1x10* 1.5x10*]N/m andc, =[100 500]Ns/m, while the lower bounds are zero.

The following cases are considered
i No prediction error, termed as NE .

ii. Additive prediction error with variance scaling according to Eq. (5.16) and y

chosen as 10%. This case is termed as AE .

iii. ~ Additive prediction error with variance scaling according to Eqg. (5.17) and w
chosen as 5%. This case is termed as AE,.

iv.  Multiplicative prediction error (ME) with i chosen the same as in AE, .
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As discussed in Section 5.2, the NE and AE cases and ME and AE, cases lead

to identical RDO designs when normalization is established with respect to the utopia

point (as was done here). The higher value for v chosen for 4E compared to the value
for AE, is selected so that similar values are established for the error variance o’
between AE and AE,.

The results of the optimization are shown in Table 5.2, Figure 5.3 and Figure 5.4.
In particular, Table 5.2 shows the optimal solutions for k, and ¢, and the different
weights, as well as the performance wx(x) and o(x) under that optimal design
configuration. For the AE, and ME designs, the variance for the real system o, (x) is

reported (that is, under the influence of the prediction error). For the AF design this

information is omitted since it merely corresponds to multiplication of o(x) by \/1+l//2

. Figure 5.3 then shows the different optimal solutions in the design space X whereas
Figure 5.4 the Pareto-front in the normalized (with respect to utopia point) objective
space F. The arrow in this figure represents the closest distance of any design from the
utopia point. The closest point corresponds to the w=0.4 design for all cases
considered, and it would have been the preferred design based on this traditional

approach for evaluation of appropriateness among RDO design.
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TABLE 5.2

RDO DESIGNS RESULTS FOR ALL CASES CONSIDERED FOR THE TMD IMPLEMENTATION

Large variability Small variability
NE, AE AE, , ME NE , AE AE, , ME

X, X, X, X,

4(X) H(X) 4(X) H(X)
k, (N/ k, (N/ k, (N/ k, (N/

w d ( m) O-(X) d ( m) GS(X) d ( m) O_(X) d ( m) GS(X)

¢, (Ns/m) ¢, (Ns/m) c, (Ns/m) c, (Ns/m)
0 14873 14.8 14873 14.81 14705 12.4 14705 12.49

211.4 4.41 211.4 4.47 142.05 1.84 142.05 1.95
14536 14.8 14536 14.83 14367 12.7 14409 12.65
244.43 4.32 241.12 4.39 198.19 1.47 184.98 1.67
14240 14.8 14282 14.87 14156 13.0 14240 12.91
274.15 4.26 274.15 4.33 247.73 1.28 22791 1.49
14029 14.9 14029 14.91 13987 13.2 14071 13.12
303.87 4.22 300.57 4.29 27745 1.22 257.64 1.42
13776 14.9 13818 14.95 13903 13.3 13987 13.27
323.69 4.20 320.39 4.27 297.27 1.20 280.76 1.39
13438 15.0 13480 15.02 13734 13.5 13818 13.45
356.71 4.18 356.71 4.25 326.99 1.18 307.18 1.37
12974 15.1 12974 15.11 13565 13.7 13649 13.65
396.35 4.17 393.04 4.25 356.71 1.17 340.2 1.36

0.1

0.2

0.3

0.4

0.6

Focusing first on these RDO results, it is evident that the uncertainty in the
system description has an important impact on the robust design configuration.
Different values for w lead to different optimal designs, with the higher variability case
(larger uncertainty in system description) contributing, as expected, to higher values of
the system statistics (mean and standard deviation). The variation of the normalized
values for these statistics is, though, smaller for this case (Figure 5.4), and the same
principle applies for the optimal design configurations. This is easy to explain; because

of the higher uncertainty in the system description, the TMD has smaller comparative
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efficiency (more challenging to regulate the performance over the entire ® region of
importance) and as such, the differences between the performance for different w
values become smaller. The prediction error has an impact on the optimal design

configuration (as seen by the differences in designs between AE,/ME and NE/AE),

especially for the small variability case, something that is evident in Figure 5.3 and
Figure 5.4. This should be attributed to the fact that since for that case the impact of the
system uncertainty is smaller (smaller variability in system characteristics), which allows
the uncertainty induced by the error to influence more prominently the resultant

design/performance.

(a) Large variability (b) Small variability
400 : : 400 — 1 . :
w=1
» w=0.6 ™1
350 : 4350t w=1
[ ]
w=0.4 -
e w=0.6
— o
_ 300} : 8 w=03 1 300} .
S & w=0.4
2 2 8
= w=02" = Ww=0.3
Q Q [ J
250 | 4250t m
w=0.1' w=0.2
[ ]
u
200 : ~w=0..0 200f .
w=0.1 o
NE, AE = NE AE
o AE:, ME e AFE:; ME
150 4 L4150t w=0 _
13 135 14 145 15 13 135 14 145 15
k; (N/m) x 10° k., (Nim) x 10'

Figure 5.3 Design space along with Pareto optimal designs that
compose the set I" for (a) large variability case, and (b) small
variability
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1.051

1.041 -

1.01

(a) Large variability

w=0

—&— NE, AE

— & — AL, ME ||

1

1.01
pu(xX)u,

1.02

(b) Small variability

|| —=—NE, 4E
|| — o AE, ME
1.5 e he
1.4
\b%
=
S
1.2
1.1
. W
095 1 1.05 lf"l 1.15

pX)p,

Figure 5.4 Pareto-front for the TMD RDO implementation of the
(a) large and (b) small variability cases. Closest design to utopia

point indicated with an arrow.

The probability of dominance is examined next. This further requires definition

of the correlation characteristics for the prediction error. The exponential function in Eq.

(5.12) is adopted, with normalization weight v, selected as one over the length of the

design domain for each design variable. The decay rate A is selected so that correlation

decrease is equal to p, =5% when the total change in the weighted distance reaches

a =30%, leading to

a
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This assumption leads to the following correlation matrix p,, between the

different designs for the AE design case (similar are the matrices for the AE, /ME

cases) for the large and small variability cases, respectively,

!
0.89
0.67
P =| 0.44
0.28
0.12
10.03

1
0.78
0.44
Do ~| 0.26

0.17

0.08
10.03

0.89
1
0.91
0.72
0.54
0.28
0.09

0.78
1
0.84
0.64
0.5
0.3
0.16

0.67
0.91
1
0.93
0.79
0.51
0.21

0.44
0.84
1
0.94
0.84
0.63
0.41

0.44
0.72
0.93
1
0.95
0.73
0.38

0.26
0.64
0.94
1
0.97
0.84
0.63

0.28
0.54
0.79
0.95
1
0.89
0.56

0.17
0.5
0.84
0.97
1
0.94
0.77

0.12
0.28
0.51
0.73
0.89
1
0.83

0.08
0.3
0.63
0.84
0.94
1
0.94

0.03]
0.09
0.21
0.38
0.56
0.83

0.03]
0.16
0.41

0.63 |.

0.77
0.94

2

(5.42)

(5.43)

The probability of dominance over I' as well as the degree of dominance for 3

different values of d ={2,3,4} are then calculated and shown in Table 5.3 though Table

5.6. Rather than just identifying the dominant design based on the procedure outlined

in Section 5.1.2, here the degree of dominance for different d values is reported to

facilitate a more thorough comparison. In particular, Table 5.3 and Table 5.5 show the

results for the NE and AE designs for the large and small variability cases,

respectively. Note that even though the designs corresponding to these cases (AE and

NE) are the same, the probability of dominance will not be, since the latter design
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includes a prediction error (that influences this probability). Subsequently, Table 5.4 and

Table 5.6 show the results for the AE, and ME in a similar fashion. The results will also

be different in this case because of the different impact of the prediction error. 10000
samples were used to calculate the statistics reported in these tables, facilitating a high-
accuracy comparison.

Based on the probability of dominance F,(x, |I') over the entire set I', the

design corresponding to w =0 is deemed as the dominant one for all cases considered.
For the small variability case, this dominance is preserved even when looking at lower
dimensional subsets. For all subsets considered, i.e. d ={2,3,4}, design w=0 emerges
as the more dominant one (degree of dominance for it has a positive value), although
the margin of dominance is somewhat reduced, dropping to just 15% for d =2
dimensional subsets. The design corresponding to w=0.1 emerges as the second most
robust design for all cases considered. It is interesting to note that this design would
have also been the second preferable one when looking at the entire set I'.
Introduction of the model prediction error has a small influence on the estimated
statistics, with the overall trend corresponding to relative reduction of the preference,
while degrees of dominance trend closer to O (note that this does not always hold). No
significant changes are reported for the degree of preference toward the w=0 design.
This should be attributed to the fact that the main rival design isw = 0.1, which has high
correlation to w=0 based on the assumed correlation function for the prediction error,

As such, this error has only a small impact on the calculated statistics.

193

www.manaraa.com



TABLE

53

PROBABILITY AND DEGREE OF DOMINANCE FOR NE AND AE (LARGE VARIABILITY)

NE AFE
W B(x, D) | Dy(x) | Dy(x,) | Dy(x,) | By(x, D) | Dy(x,) | Dy(x,) | Dy(x,)
0 0.370 -0.260 | -0.203 | -0.159 0.352 -0.047 | -0.038 | -0.001
0.1 0.048 -0.145 | -0.515 | -0.480 0.084 0.032 | -0.342 | -0.314
0.2 0.047 -0.083 | -0.476 | -0.476 0.079 -0.032 | -0.379 | -0.366
0.3 0.069 0.074 -0.366 | -0.377 0.063 -0.094 | -0.428 | -0.398
0.4 0.038 -0.074 | -0.483 | -0.483 0.074 -0.129 | -0.427 | -0.392
0.6 0.059 -0.129 | -0.498 | -0.469 0.092 -0.172 | -0.416 | -0.369
1 0.369 -0.262 | -0.196 | -0.159 0.257 -0.210 | -0.228 | -0.190
TABLE 5.4

PROBABILITY AND DEGREE OF DOMINANCE FOR ME AND AE, (LARGE VARIABILITY)

ME AE,

w ﬁD(Xk |F) Dz(xk) D3(Xk) D4(Xk) IBD(Xk |F) Dz(Xk) D3(Xk) D4(Xk)
0 0.345 0.015 | -0.017 | 0.015 0.329 -0.008 | -0.045 | 0.01
0.1 0.093 -0.015 | -0.342 | -0.315 0.092 0.008 | -0.331 | -0.303
02| 0.079 -0.076 | -0.399 | -0.373 0.081 -0.047 | -0.382 | -0.356
03| 0.067 -0.110 | -0.442 | -0.394 0.068 -0.083 | -0.426 | -0.378
0.4 0.079 -0.128 | -0.409 | -0.382 0.081 -0.103 | -0.394 | -0.364
0.6 0.099 -0.150 | -0.37 | -0.353 0.101 -0.127 | -0.361 | -0.335
1 0.237 -0.168 | -0.243 | -0.206 0.247 -0.144 | -0.216 | -0.179
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TABLE

5.5

PROBABILITY AND DEGREE OF DOMINANCE FOR NE AND AE (SMALL VARIABILITY)

NE AE
ISD (x, D) | Dy(x) | Dy(x) | Dy(x;) ISD (x, D) | Dy(x) | Dy(x) | D,(x,)
0 0.579 0.158 | 0.278 | 0.299 0.577 0.161 | 0.281 | 0.301
0.1 0.197 -0.158 | -0.381 | -0.381 0.200 -0.161 | -0.376 | -0.377
0.2 0.091 -0.553 | -0.684 | -0.685 0.082 -0.554 | -0.690 | -0.691
0.3 0.048 -0.737 | -0.819 | -0.819 0.048 -0.724 | -0.809 | -0.810
0.4 0.022 -0.829 | -0.891 | -0.891 0.021 -0.810 | -0.877 | -0.876
0.6 0.021 -0.877 | -0.916 | -0.893 0.024 -0.853 | -0.899 | -0.877
1 0.039 -0.920 | -0.898 | -0.875 0.046 -0.896 | -0.875 | -0.853
TABLE 5.6

PROBABILITY AND DEGREE OF DOMINANCE FOR ME AND AE, (SMALL VARIABILITY)

ME AE,

ISD (x, |D) | Dy(x) | Dy(x) | Dy(x;) ISD (x, D) | Dy(x) | Dy(x) | D,(x,)

0 0.521 0.153 | 0.248 | 0.271 0.513 0.134 | 0.236 | 0.260

0.1 0.173 -0.153 | -0.363 | -0.358 0.172 -0.134 | -0.355 | -0.350
0.2 0.079 -0.434 | -0.606 | -0.596 0.081 -0.416 | -0.594 | -0.583
0.3 0.053 -0.517 | -0.674 | -0.658 0.054 -0.503 | -0.664 | -0.648
0.4 0.036 -0.538 | -0.683 | -0.670 0.037 -0.526 | -0.675 | -0.660
0.6 0.041 -0.561 | -0.666 | -0.680 0.042 -0.549 | -0.659 | -0.670
1 0.093 -0.594 | -0.648 | -0.617 0.097 -0.584 | -0.638 | -0.605
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TABLE 5.7

PROBABILITY AND DEGREE OF DOMINANCE FOR SOME DESIGN CASES WHEN NO

CORRELATION IS ASSUMED FOR PREDICTION ERROR

Small variability Large variability

AE ME AE

w ﬁD(Xk|F) D2(Xk) DS(Xk) ﬁD(Xk|r) DZ(Xk) D3(Xk) ﬁD(Xk|F) DZ(Xk) D3(Xk)
0 | 0.551 0.160 | 0.258 0.388 | 0.127 | 0.153 0.243 | 0.013 | 0.026
0.1] 0.202 | -0.160|-0.313 | 0.205 | -0.127 | -0.158 | 0.144 | -0.013 | -0.076
0.2 0.082 | -0.538|-0.594 | 0.122 | -0.267 | -0.298 | 0.118 | -0.042 | -0.115
0.3] 0.056 |-0.614|-0.667 | 0.092 | -0.361 | -0.373 | O0.111 | -0.072 | -0.137
0.4| 0.042 | -0.704 | -0.726 | 0.076 | -0.435|-0.432| 0.114 | -0.092 | -0.159
0.6| 0.034 | -0.775]-0.795 | 0.063 | -0.506 | -0.496 | 0.123 | -0.13 | -0.185
1 0.030 | -0.833 | -0.817 | 0.050 | -0.573 | -0.535 | 0.143 | -0.180 | -0.180

For the high variability case, the trends change. Similarly, the w=0 design
maintains dominance when looking at the entire set I' . However, it would not emerge
as dominant for some of the cases considered when looking at the lower dimensional
subsets. For the NE case, the w=0.3 design emerges as the dominant one since it
exhibits d =2 dominance, although with relatively small degree of dominance (7.4%). It
is interesting to note than when looking at higher values for d , w=0.3 quickly loses its
dominance, and even when looking at the entire set A, its associated probability of
dominance is rather small (7%). Another interesting characteristic for the NE case is
the fact that no design exhibits dominance for d =3,4 dimensional subsets, with all of
them having negative values for the degree of dominance. Overallw=0, w=1 and

w=0.3 exhibit the highest probability of dominance with robust selection
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corresponding to w=0 if one is merely looking at the entire set I' and to w=0.3
based on the proposed multistage approach, focusing on lower d -dimensional
dominance. This discussions demonstrate that looking solely at PD (x, |T) could not be
enough, and looking at dominance within smaller subsets becomes necessary.
Comparisons among S* provide the more trustworthy information since it is equivalent
to one-on-one comparisons of the designs. Looking at larger dimensional subsets,
conclusive information is not necessarily provided for selecting a particular design,
though some valuable insight is provided.

The introduction of the error in this case has a bigger impact (compared to the
low variability case); for AFE, the statistics change significantly when compared with
the NE case, even though the compared designs are identical. This demonstrates the
importance of explicitly accounting for the prediction error in the comparisons for the
probability of dominance. For AFE, the design w=0.1 exhibits the lower dimensional
dominance (d =2), though with a very small margin (degree of dominance 3%),
whereas two other designs, w=0.2 and w=0.1, show good performance (degree of
dominance as large as -5%). For this instance, (dominance by only a small margin) one
would be interested in looking at higher values for d before assessing overall
robustness, and in this case, it is evident that w=0 exhibits better robustness
characteristics. The previous discussion indicates that beyond the degree of dominance
being positive, its value should also be taken into account by the designer in assessing

the preferences toward different designs. Looking next at the other cases, for the ME
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and AE, cases, the characteristics for dominance also change (compared to the NE
case), although with smaller margins. For ME, w=0 emerges as the dominant design,
exhibiting both d =2 and d =4 dominance (but not d =3 for which no design

emerges as dominant, with w=0 having the better performance overall). For AE,,

designs w=0 and w=0.1 are practically equal. In this case, the decision needs to be
based in comparisons of higher order values ford , which tilts the preference toward
w=0. The big impact of the prediction error on the preference toward different
designs for the high variability case can be explained based on the inability of the TMD
to efficiently suppress vibrations over the entire important ® region; thus, close
performance is established by a few different designs, and this is why the different
preference for this performance given by the different error-model selections can
ultimately shift the dominance toward different designs.

To further examine the influence of the correlation of the error on the results,
Table 5.7 shows the probability of dominance for some of the design cases considered (
AE and ME for the small variability case and AFE for the large variability case) if no
such correlation is assumed. Comparison of these results to the result in Table 5.3 (for

AE and large variability), Table 5.5 (for AE and small variability), and Table 5.6 (for
ME and small variability) shows small differences for the AE case when small

variability is assumed for the system description, but large differences for the other two

cases. For the large variability case ( AE ), the differences are large enough to impact

the dominance of the designs over the d =2 and 3 dimensional subsets; when no
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correlation is considered for the prediction error, the design w=0 emerges as the
dominant design, which was not the case before. This discussion shows that the
assumed correlation of the prediction error can have an impact on the calculated
statistics, so it should be carefully chosen.

It is also interesting to note that in no case examined does the design selected
through the degree of dominance coincide with the one corresponding to the minimum
distance from the utopia point (w=0.4 in all cases as previously discussed). The latter
design corresponds to rather small values for the probability of dominance and the
degree of dominance for different values of d in all cases and would have been avoided
through the proposed approach. This demonstrates the utility of the new methodology
for offering an alternative approach in assessing the robustness characteristics of
different proposed designs.

Finally, the connection between RDO and RBDO is investigated with respect to
the preference provided by the probability of dominance. For this purpose, the

probability of failure Pf for different thresholds for the amplification factor b, is
plotted in Figure 5.5. This probability is defined as the probability that the amplification
factor will exceed the threshold b,,.. The measure of comparison (failure probability) is

motivated by RBDO (since that is the statistical measure used in the problem
formulation in that case), whereas the designs compared are ultimately the ones coming

from RDO. Results are shown for cases AE and NE only and for small variability since

the trends for ME and AE, are similar, whereas the curves for the high variability case
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for the different designs examined were found to be identical (curves practically

coincide with one another), stemming from the aforementioned inability of the TMD to

regulate effectively the performance over the entire © domain.
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The results indicate a correlation for smaller threshold values

Figure 5.5 Probability of failure £, as function of failure threshold

b, for NE and AE designs for small variability case

between the

RBDO criterion and the RDO designs reported to be the dominant ones (corresponding

to high probability of dominance), as the latter correspond to the smallest failure

probability (best RBDO performance) among the candidate designs. This is not the case

for rare events. This demonstrates that a modification of the probability of dominance is

needed if the intention is to establish robust performance against rare events. This is

understandable since the definition adopted in Eq. (5.1) provides equal importance for

all responses and does not necessarily focus on responses that exceed certain
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thresholds (thus not giving priority to rare events). The latter can be achieved by
incorporating an additional appropriate weight in the definition of the probability of
dominance, which is out of the scope of the current investigation. It should be stressed
that this discussion follows the general trends reported when comparing between RDO
and RBDO approaches; highlighting the differences of the two approaches for rare
events. Also, it should be noted that the prediction error has only a small influence on
the calculated probabilities of failure. This is anticipated as the values assumed for this
error are in general small (the underlying assumption is that the numerical model

approximates the system fairly well).

5.3.2 Case Study: Topology Optimization for Minimum Compliance

5.3.2.1 Topology Optimization for Minimum Compliance Simulation Model

Topology optimization searches for the structural configuration (shape and
connectivity of the structure) contained within a given design domain X that for some
given boundary and loading conditions provides the most favorable response in terms of
some chosen performance measure. Details for deterministic topology optimization
problems are provided in Appendix B

The RDO formulation has been employed for addressing uncertainties within
topology optimization applications (Dunning and Kim 2013; Chen et al. 2010; Dunning et
al. 2011; Tootkaboni et al. 2012). A problem similar to the one presented in (Chen et al.

2010) is adopted in this investigation: a rectangular design domain with an aspect ratio
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of 2:1 is subjected to a central point load at the bottom, with simply supported
conditions (Figure 5.6). The design domain is discretized into 100x50 elements
(resulting in @ number of elements of N, =5000), and the mass fraction is taken as
m, =03 (meaning that 30% of the domain may be occupied). The uncertain model

parameters correspond to:

(i) The loading conditions, where the load in the horizontal direction F. is assumed

to follow a uniform distribution in [-1,1] and the load in the vertical direction F,
a uniform distribution in [0, 2]
(ii) The Young’s moduli for each element, assumed to follow a lognormal
distribution with median 1 and coefficient of variation (c.0.v) of 0.2.
The total number of uncertain parameters is 5002, while the performance function is
directly taken as the compliance of the structure, i.e. A(x,0)=c(x,0). The gradient of
the performance function is also easy to obtain (i.e. this does not fall under the general

category of “black-box” problems), as shown in Appendix B.

| x| EGw)
/ F F %Z

Figure 5.6 Topology optimization RDO problem schematics
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The solution to the optimization problem Eg. (2.11) is obtained with the Method
of Moving Asymptotes (MMA) (Svanberg 1987), which is a popular algorithm to solve
topology optimization problems. To avoid a solution with intermediate densities, a

penalization factor of P, =3 is employed. In addition, to avoid the problem in which a

checker-board pattern emerges causing artificial stiffness, a filter with a size of 1.2 is
employed. More details about the selection of these parameters can be found in
(Bendsge and Sigmund 2003). Since the optimal design is sought employing a gradient-
based algorithm, the gradient for the mean Eqg. (2.9) and standard deviation of the

response Eq. (2.10) must be provided. Assuming that the functions c¢(x,0)p(0) and

oc(x,0)
Oox

e

p(0) are continuous on the domain X x® and bounded, while also noting that

p(0) does not depend on Xx, the differentiation and the expectation operators

commute (Spall 2003), leading to the following expressions for the elements of these

gradients

Ou(x) _0E[c(x,0)] =E{ac(x,9)}, e=L..N (5.44)

ox, ox, ox,

6a(x)

. PR
E{C(X’B)W}E[C(X’O)JE{W} (5.45)
\/E[C(X’G)z}—E[c(x,e)T v e=L..,N

e
- e
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All expected values required within the above expressions are obtained through
stochastic simulation employing again exterior sampling (as in the TMD optimization
case) with ta otal of N =2000 samples. Note that for the case corresponding to the
multiplicative error or the moment-proportional additive error, the partial derivatives

for the system variance, needed in the objective function Eq. (5.38), are transformed to

dc(x,0 dc(x,0
56, (x) E[C(X,B)cé;’ )}(l+l//2)—E[c(X,9)]E{cé:’ )}
\X) ‘ « 4 e=1..,N, (5.46)

ox, \/E[c(x,ﬂ)z}(ﬁwz)_E[c(xjg)]z

5.3.2.2 Results and Discussion
In this example, the value of w was varied from 0 to 1 with equal steps of 0.2,
and only the following three cases are considered:
i No prediction error, termed as NE'.
ii. Additive prediction error with variance scaled according to Eq. (5.16) and w
chosen as 10%. This case is termed as AE .
iii. ~ Multiplicative prediction error with i chosen as 5%. This case is termed as ME'.
The resultant optimal solutions were very similar for the NE/ AE and ME

cases (almost identical topologies); thus, the various results are primarily reported for
the former only. The optimal topologies for different values of w are shown in Figure
5.7 and the statistics (mean and standard deviation) in Table 5.8. A number of 5000

samples were used for the statistics reported in this table in order to provide a higher
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accuracy comparison. Figure 5.8 shows the Pareto front in the normalized (with respect
to utopia point) objective space F for all three design cases considered. The arrow in
this figure represents the closest distance of any design from the utopia point. The
closest point corresponds to the w=1 design for all cases, and it would have been the
preferred design based on this traditional approach for evaluation of appropriateness

among RDO design.

A A

Figure 5.7 Optimal topologies for different values of w for the
NE | AE designs
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TABLE 5.8

MEAN AND STANDARD DEVIATION OF OPTIMAL SOLUTION FOR THE NE CASE FOR THE

TOPOLOGY OPTIMIZATION PROBLEM

w (x;) o(x;)
0 39.01 29.85
0.2 39.03 29.75
04 39.08 29.66
0.6 39.32 29.59
0.8 39.40 29.50
1 39.44 29.30

1.018

1.016

1.014

1.012

1.01

o(x)/o,,

1.008

1.006

1.004

1.002

1 1.005 1.01
puX)u,

Figure 5.8 Pareto-front for the Topology RDO implementation.
Closest design to utopia point indicated with an arrow.
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These results agree with the ones presented in (Chen et al. 2010), where
asymmetry is observed in the optimum designs due to asymmetric boundary conditions.
It is possible to observe that the different designs have a similar statistical response
even though they correspond to distinct topologies. In fact, the values for 4 and o
between the different designs are so similar that it would be very challenging to select a
preferred design from the set solely based on these statistics. Thus, the probability of
dominance, which in this case corresponds to the probability of having a lower
compliance over ®, provides a rational measure for assessing the appropriateness of
the candidate designs. For the correlation of the prediction error needed to calculate
this probability (and similar to the TMD example), the exponential function in Eq. (5.12)

is adopted, with normalization weight v, selected as one and decay rate 1 selected so
that correlation-decay is equal to p, =5% when the total change in the weighted

distance between designs reaches o =30% [as described by Eq. (5.41)]. This

assumption leads then to the following correlation matrix p,, between the different
designs for the AE design case (similar result holds for the ME design),

1 0.63 034 0.11 0.07 0.03]
0.63 1 0.67 0.19 0.11 0.05
0.34 0.67 1 0.37 0.20 0.06
pkm = . (547)
0.11 0.19 0.37 1 0.74 0.17
0.07 0.11 0.20 0.74 1 0.27

1 0.03 0.05 0.06 0.17 0.27 1

The probability of dominance over I' as well as the degree of dominance for 2
different values of d ={2,3} are shown in Table 5.9. As in the TMD example, rather than
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just identifying the dominant design based on the procedure outlined in Section 3.2, the
degree of dominance for different d values is reported to facilitate a more thorough

comparison.

TABLE 5.9

PROBABILITY AND DEGREE OF DOMINANCE FOR NE, AE,AND ME FOR THE

TOPOLOGY OPTIMIZATION PROBLEM

NE NE ME

w [Py (x, |T) | Dy(x,) | Dy(x,) | By(x, |T)| Dy(x)| Ds(x,) | B,(x, |D)| Dy(x,)| Dy(x,)
0| 0.371 0.030 | -0.005 | 0.207 0.005 | -0.043 | 0.267 0.055 | 0.065
0.2] 0.009 |-0.030 | -0.47 0.143 | -0.005 | -0.126 | 0.158 | -0.055 | -0.162
04| 0.164 |-0.084 | -0.280 | 0.161 -0.016 | -0.081 0.163 | -0.092 | -0.126
0.6| 0.162 |-0.174 | -0.362 | 0.140 | -0.060 | -0.174 | 0.122 | -0.202 | -0.297
0.8 0.002 |-0.214 | -0.523 0.140 | -0.072|-0.173 | 0.115 | -0.227 | -0.307
1 0.290 |-0.180 | -0.218 | 0.207 | -0.076 | -0.095 | 0.172 | -0.237 | -0.249

For the NE case, design w=0 emerges as the dominant one when looking at

the entire set T, with that preference also upheld over d =2 (S?) subsets and d =3 (
S®) dimensional subsets. For the d =3 case, no design actually emerges as dominant
(values of D;(x,)are negative for all of them, for the w=0 design the value of D;(x,)

is very close to zero, and much larger than all other designs, indicating a strong
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preference for it, especially when combined with the information for dominance over I
and over the two-dimensional subsets). It is interesting to note that design w=0.2 is

almost dominant over the two-dimensional subsets (value of D,(x,) only slightly

negative) but has poor performance when looking at the three-dimensional subsets or
at the entire set I'. This stresses the importance of looking at different subsets to
evaluate the preference over a specific design, especially when the dominance
properties it exhibits have a narrow margin (values close to zero). When incorporating
the additive prediction error in the analysis ( AE case in Table 5.9), we see significant
differences in the calculated probabilities. This should be attributed to the fact that the
compared designs have very similar statistical characteristics (as shown in Table 5.8).
Design w=0 still emerges as the preferred one when looking at lower dimensional
subsets (d =1{2,3}, nothing though that for d =3 there is no dominance) but with much
smaller margins compared to the NE case, whereas when looking at the entire set "
it practically ties with the w=1 design. Changing the probability model for the
prediction error to multiplicative influence ( ME case) changes its overall impact.
Though the prediction error still has a strong influence towards the calculated
probability of dominance (changes over the NE case), the relative impact as compared
to the AFE case changes without a change in the overall preference (w =0 is still the
dominant design with actually increased robustness margins when looking at the lower
dimensional subsets). This validates the previous conclusions that the prediction error

model may have an impact on the results.
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Finally, it is also interesting to note that, like the TMD example, in no case
examined does the design selected through the degree of dominance coincide with the
one corresponding to the minimum distance from the utopia point (w =1 in all cases as
previously discussed). Though the w=1 design has competitive values when
considering the probability of dominance over the entire set I', for some cases
considered it corresponds to rather small values for the probability of dominance for
lower values ofd and would have been avoided through the proposed approach. This
further demonstrates the utility of the new methodology for assessing the robustness

characteristics of different proposed designs.

5.4 Summary

In this chapter, a novel framework to assess the appropriateness of robust
designs was proposed within RDO problems. Traditionally, RDO employs the mean and
standard deviation of a response function to obtain robust designs with different
weightings of these competitive objectives, ultimately resulting in different optimal
designs. The approach is based on a new robustness measure, termed probability of
dominance. This measure is defined as the likelihood that each design will outperform
the rival designs within the candidate set. Given that the resultant probability is a
function of the exact designs composing the set, a multi-stage approach was also
formulated for enhancing the robustness of the chosen solution. This approach
compares designs within smaller dimensional subsets and searches for the design that

dominates within all subsets that include it. The latter is ultimately characterized by a
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positive value of the degree of dominance, with that degree defined by comparing the
probability of dominance for the candidate design against the probability of dominance
of all other designs within all different subsets to which the candidate designs belongs
to.

The impact of prediction errors between the real system and the assumed
numerical model was also investigated. Two different error models were explored;
these correspond to either an additive or multiplicative influence, and reasonable
assumptions for selecting the error characteristics were discussed in detail. The additive
prediction error can be ultimately chosen to address two different sources of modeling
uncertainty. It can be selected to address only un-modeled uncertainties when its
variance is scaled according to the response variance of the assumed numerical model.
If this assumption is selected, the formulation of the RDO problem is not impacted at all.
This error can also be also selected to address both un-modeled uncertainties and un-
modeled system characteristics when its variance is scaled according to the second
moment of the numerical model. This in turn is equivalent to the multiplicative
prediction error in terms of how it impacts the statistics of the real system performance
and ultimately the RDO formulation. In addition, it was shown that when modeling
errors are considered, the impact on the probability of dominance corresponds to
substitution of the indicator function, describing the favorability of each design, by a
likelihood function dependent upon the assumed probability model of the error and the

model performance.
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Two RDO illustrative examples were presented, the first considering the design
of a tuned mass damper (TMD) for vibration mitigation of harmonic excitations and the
second a topology optimization for minimum compliance. It was shown in these
examples that the new approach provides an alternative to the established popular
methodologies for assessing the appropriateness of candidate designs. Thus it
ultimately equips designers with an additional tool. The results also showed that looking
solely at the probability of dominance (over the entire set) does not always lead to the
most appropriate choice. Comparison among smaller dimensional subsets can guide
decisions better and further facilitate a deeper understanding of the preference toward
each design, even when none emerges as the dominant one. It was also demonstrated
that beyond the degree of dominance being positive, its value should also be taken into
account by the designer in assessing the preferences for different designs. Small values
for the degree of dominance should be carefully examined by the designer when
evaluating the different designs. Moreover, it was shown that explicitly including the
prediction error in the comparison can have a significant impact on the assessment. In
this case, the assumed correlation of the prediction error between different designs
needs to be carefully considered. The influence of the prediction error is especially
critical when the compared designs have similar statistical performance despite
corresponding to different design configurations. In general, the proposed method
showed promising results and provided a rational framework for assessing the

appropriateness of a set of candidate robust designs.
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CHAPTER 6:

CONCLUSIONS AND FUTURE WORK

6.1 Contributions of This Dissertation

This dissertation offered computational and theoretical advances for design
optimization problems under uncertainty that utilize the probabilistic system
performance as objective function. Special focus was placed on applications that involve
potentially complex numerical and probability models, and a generalized approach was
adopted treating the system model as a “black-box” and relying on stochastic simulation
for evaluating the probabilistic performance. Two generalized goals were identified: (a)
to improve the efficiency of stochastic simulation techniques when implemented within
the context of numerical optimization algorithms relying on local searches, and (b) to
provide a novel robustness measure to assess the appropriateness of a set of candidate
designs established within the RDO formulation while addressing the existence of
prediction error between model and system performance.

To achieve these generalized goals, three distinct research objectives were set to
be accomplished:

1) Formulate an adaptive importance sampling framework for design under

uncertainty optimization problems. This framework improves the efficiency of
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stochastic-simulation-based evaluations of the objective function by sharing

information across the iterations of the numerical optimization algorithm.

2) Establish an adaptive surrogate modelling methodology with a similar goal,
utilizing specifically a kriging metamodel. Consider a novel implementation of
the surrogate model in the augmented model parameters and design variables
space and develop efficient techniques for sharing of information between
iterations to improve the accuracy of the developed metamodel.

3) Offer a new measure for assessing the appropriateness of different RDO designs
and examine the impact of model prediction errors on this measure as well as
the RDO problem itself.

The first two objectives shared a common foundation and directly addressed the
goal (a), while the third objective addressed goal (b). The common foundation was
established by sharing information across the iterations of the optimization algorithm to
improve computational efficiency of the stochastic-simulation-based evaluation of the
objective function. Two main tasks were considered within this foundation: (i)
generation of important samples from a density proportional to the integrand,
representing the domain in the uncertain model parameter space that has larger
contribution to the integrand representing the probabilistic performance, (ii) integration
of a global probabilistic sensitivity analysis that can identify the importance toward the
overall probabilistic performance of different uncertain model parameters. Both tasks

were accomplished with small additional computational burden, using the system model
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evaluations readily available within the stochastic-simulation-based evaluation of the
objective function

Chapter 2 of this dissertation introduced the simulation-based optimization
under uncertainty problem in a general form as well as the popular RDO formulation. It
also discussed some common computational tools that were utilized to achieve the
required goals. Chapters 3-5 were devoted to achieve the three different research

objectives, and their contributions are summarized in the following sections.

6.1.1 Optimization under Uncertainty with Adaptive Importance Sampling

In Chapter 3, which discussed the first research objective, an adaptive
Importance Sampling (IS) formulation was introduced. It uses the important samples to
formulate IS densities utilizing Kernel Density Estimation (KDE) and considers an explicit
optimization of the KDE characteristics using model response evaluations readily
available from the previous iteration of the optimization algorithm. The global sensitivity
analysis was used to select the model parameters that span the IS density, avoiding the
well-known problems in establishing IS densities for high dimensions. The novel
contributions include:

e A complete adaptive framework was established for formulating IS densities by
sharing information across the iterations of optimization algorithms relying on
local search (so that design configurations examined in subsequent iterations are
not drastically different and one can provide information for the subsequent).

Rules and guidelines for this sharing of information were established and a
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robust approach was established for the adaptive selection of the number of
samples to achieve a predetermined accuracy level at each iteration.

A probabilistic global sensitive analysis was integrated within this framework to
provide a prioritization of the importance for the different model parameters.
This prioritization was employed to determine on what model parameters IS
should focus. Incorporating this information can help circumvent numerical
problems that arise when trying to formulate IS for a large number of model
parameters.

A new approximation for the expected coefficient of variation in subsequent
iterations was derived for any considered IS density. This approximation was
established using readily available model response evaluations and was used to
optimize for the characteristics of KDE proposal densities as well as for selecting
the optimal number of parameters to consider in the IS formulation. The
aforementioned probabilistic sensitivity analysis and relative prioritization of the
model parameters were used to reduce the computational cost of this
optimization. This concurrent optimization of density characteristics and number
of model parameters provides a powerful framework for rational selection of
optimal IS densities.

A robust formulation of the aforementioned optimization was established for
applications in which not enough information is available to obtain an accurate
approximation for the expected value of the coefficient of variation (i.e. when a

greedy optimization approach is adopted tolerating a large coefficient of
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variation and as such, a reduced number of samples of the system model

response). Higher order statistics (variance) was considered for this purpose.

This formulation ultimately offers enhanced robustness in selection of optimal IS

densities.

In the illustrative example considered, it was shown that the proposed adaptive
IS framework can provide significant computational savings since it leads to an adaptive
selection of IS densities utilizing readily available information. The robust formulation
can avoid vulnerabilities in identifying erroneous optimal IS characteristics because of
numerical errors associated with the approximation for the expected coefficient of
variation when limited samples are available, whereas the adaptive optimal selection of
parameters for the IS offers enhanced robustness and efficiency when compared to
establishing IS for all model parameters.

The framework has ultimately no constraints as it can be implemented in
problems with an arbitrary number of model parameters and design variables (as long

as an appropriate numerical optimization algorithm is adopted to address the latter).

6.1.2 Optimization under Uncertainty with Adaptive Kriging in Augmented Space
Chapter 4 offered an adaptive implementation of a surrogate modeling within
the same context considered in Chapter 3. In particular, a kriging metamodel was
adopted due to its ability to efficiently approximate complex functions, offer estimates
for the local error variance and provide gradient information. The formulation was

established in the augmented model parameter and design variable space. The
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proposed framework used the important samples to approximate the target region for
the selection of support points (Design of Experiments — DoE) with no additional
computational effort or requirement to establish an adaptive DoE. The global sensitivity
analysis was used to select the basis functions for the kriging implementation; higher
order basis functions were considered only for the more important components of the
augmented input vector. The prediction error associated with the kriging metamodel
was also explicitly considered in the formulation of the objective function and the
design optimization.
The novel contributions are:

e A formal framework was established for creating a kriging metamodel in the
augmented input space for generalized design under uncertainty problems. This
pertains to rules for both the kriging formulation as well as the optimization for
the design variables using the derived metamodel. Within this framework the
metamodel is utilized to approximate the model response simultaneously with
respect to both the uncertain model parameters and the design variable, with
the latter belonging in some trust region (considered for obtaining the support
points for the metamodel). This approximation is then used to estimate the
objective function and its gradient for specific values of the design variables by
performing a stochastic simulation with respect to the model parameters. This
information is then utilized to establish a local search (within the selected trust
region) for the optimal design variables, and only when this local search moves

to a design configuration on the boundary of the trust region are new model
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evaluations needed. The model response approximations for the latter design
configuration are used to identify the important samples to guide decisions in
the next iteration, which starts with the task of obtaining new support points
and a new metamodel.

e A DoE approach for improving the accuracy in a target region was established
without requiring any additional computational cost, as opposed to previous
research efforts. Rather, the readily available model response evaluations are
utilized to obtain important samples and approximate a distribution for this task.
A hybrid sampling is also established by comparing this stage with an additional
space-filling stage to provide an adequate approximation over the entire domain
in the model parameter space.

e An adaptive methodology was established for selecting the order of the basis
functions for the metamodel. This is accomplished, again, with no additional
computational effort or cross-validation formulations, something that facilitates
a novel approach for such a selection. The global sensitivity analysis is utilized for
this purpose.

e The prediction error was explicitly considered in the design formulation, and the
benefits from such a consideration were clearly demonstrated.

The same illustrative example as for the adaptive IS was considered, and the
adaptive kriging was shown to offer remarkable computational savings, facilitating
convergence to the optimal solution with a very small number of model evaluations

(even when compared against the adaptive IS formulation). The DoE for the target
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region and the inclusion of the prediction error were shown to provide increased
robustness characteristics in identifying an optimal solution. It should be stressed that,
contrary to the adaptive IS, this approach has a significant constraint since the number
of the augmented input space (design variables and model parameters) can be only

moderately large.

6.1.3 Probability of Dominance as Robustness Measure

In Chapter 5, an approach for assessing the appropriateness of a set of candidate
robust designs within RDO was introduced. The approach is based on the definition of a
new robustness measure, termed probability of dominance, given by the likelihood that
a chosen design will outperform its rivals within a set of candidate designs under some
given uncertain conditions. A multi-stage approach was also formulated for enhancing
robustness of the chosen solution; this approach compares designs within smaller
dimensional subsets and searches for the design that dominates within all subsets that
include it. This ultimately leads to the concept of the degree of dominance, defined by
comparing the probability of dominance for the candidate design against the probability
of dominance of all other designs within all different subsets to which the candidate
designs belongs. The impact of the prediction error between the real system and the
assumed numerical model was also investigated in detail. Two different error models
were investigated; these correspond to both an additive or multiplicative influence, and
assumptions for selecting the error characteristics were discussed. The additive

prediction error can ultimately be chosen to address two different sources of modeling
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uncertainty. It can be selected to address only un-modeled uncertainties, when its
variance is scaled according to the response variance of the numerical model. The error
can also be also selected to address both un-modeled uncertainties and un-modeled
system characteristics, when its variance is scaled according to the second moment of
the numerical model. This in turn is equivalent to the multiplicative prediction error in
terms of how it impacts the statistics of the real system performance. Moreover, the
prediction error was incorporated into the RDO formulation and its repercussions
investigated. The original contributions are:

e The robustness measure proposed corresponds to an entirely new approach for
assessing appropriateness of designs and a measure that is directly related to the
uncertainty description (probability space) that provided the parent RDO
problem formulation.

e The multi-stage selection process facilitates a rational decision framework,
offering the designer with an enhanced metric (the degree of dominance) for
assessing the performance of the different candidate designs.

e An efficient computational approach was developed for calculating the degree of
dominance and ultimately the preferred design.

e The prediction error was formally considered in the definition of the probability
of dominance as well as for the formulation of the RDO problem itself. This
ultimately facilitates enhanced robustness in assessing the appropriateness of
each design but also explicitly addresses in the analysis/design an important

source of uncertainty, the fact that the system model can never provide exact
221

www.manaraa.com



predictions for the real model. Though this uncertainty is an integral component

of Bayesian updating approaches, it had been typically ignored in analysis/design

due to the challenges associated with its quantification.

e For addressing these challenges, an extensive discussion was presented for the
rational selection of probability model and statistical characteristics for the
model prediction error. The connection of these statistics to two different
sources for this error was examined — un-modeled uncertainties and un-model
system characteristics.

The framework was demonstrated with two different illustrative examples, from
popular RDO applications. It was shown in these examples that the new approach
provides an attractive alternative to the established popular methodologies for
assessing the appropriateness of the candidate designs, equipping designers with an
additional decision tool. The results demonstrated the importance of the multi-stage
formulation (consideration of lower-dimensional sets for the comparison) for supporting
decisions with robust characteristics. Furthermore, it was shown that explicitly including
the prediction error in the comparison can have a significant impact on the assessment.
The influence of the prediction error is especially critical when the compared designs
have similar statistical performance despite corresponding to different design

configurations.
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6.2 Future Research
There are a number of potential extensions of the research efforts summarized

below.

6.2.1 Optimization under Uncertainty with Adaptive Importance Sampling

The proposed adaptive IS focused on the integrand corresponding to the
objective function for establishing the desired densities. Within the context of gradient-
based optimization algorithms, an interesting extension corresponds to formulation of
IS directly for the gradient (or its numerical approximation), since the latter is what is
ultimately utilized by that algorithm. Of course, this task is fairly challenging to
implement since each partial derivative needs to be separately treated, indicating that a
separate IS density in needed for each component of the design vector, something that
becomes impractical in problems with a large number of design variables. A potential
remedy is to use the sensitivity analysis to determine a group of designs variables that
have a higher contribution in the optimization and then focus on them for the IS. Either

separate densities or a density that establishes a compromise can be considered.

6.2.2 Optimization under Uncertainty with Adaptive Kriging in Augmented Space

The proposed adaptive kriging implementation in the augmented space can
provide significant computational savings; an important unaddressed question is how
the number of the support points can also be adaptively selected. The answer to this

guestion is challenging since it was shown that cross-validation techniques do not
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provide accurate information for the performance of kriging metamodels in targeted

domains of interest.

6.2.3 Probability of Dominance as Robustness Measure

The probability of dominance showed promising results and provided a rational
framework for assessing the appropriateness of a set of candidate robust designs. It was
shown that in some cases, the probability of dominance can identify a preferred design,
while in other cases the distinction is not completely apparent. A closer examination in
needed in order to determine the trustworthiness of the predictions from this
framework. Moreover, it was shown that incorporation of some weight might be
necessary for some applications, such as when the focus is on reliability of rare events.

The exact characteristics of this weight implementation require further investigation.
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APPENDIX A:

SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION (SPSA)

SPSA is based on the premise that one properly chosen simultaneous random
perturbation in all components of X provides as much information for optimization
purposes in the long run as a full set of finite differences. Thus, it uses only two
evaluations of the objective function, in a direction randomly chosen at each iteration,
to form an approximation to the gradient vector. It also uses the notion of stochastic
approximation (Kushner and Yin 2003) which can significantly improve the
computational efficiency of stochastic search applications. The latter approximation is
performed by establishing (through proper recursive formulas) an equivalent averaging
across the iterations of the algorithm.

At iteration k , corresponding to designx, , the implementation of SPSA takes the

iterative form

Xy =X~ g, (Xka o’ }k) ’ (A.1)

where X, € X is the chosen point to initiate the algorithm and thei” component for the

CRN simultaneous perturbation approximation to the gradient vector in the k"

iteration, and g, (x,,{0’},) is given by
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SP_4SP
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g (%:-100}) = : (A2)

where {07}, is the sample set used at iteration £ and A}” — R™ is a vector of mutually

independent random variables that defines the random direction of simultaneous

perturbation for x. A symmetric Bernoulli £1 distribution is typically chosen for the
components of Aip, assuming that the components of x are properly normalized. Note

that the set of random numbers {0’} is selected the same for the two estimates of the

objective function at each iteration used to calculate the gradient in Eq. (A.2). As
discussed in Section 1.1.3, this reduces the variance of the difference of these estimates,
thus creating a consistent estimation error (Taflanidis and Beck 2008; Glasserman and
Yao 1992) and improving the accuracy of Eqg. (A.2). However, this sample set is not the
same across the iterations of the optimization algorithm (i.e. approach corresponding to

interior sampling).
The selection of the sequences {c;"} and {a; } for the SPSA algorithm using

CRN is discussed in detail in (Kleinman et al. 1999). A choice that guarantees asymptotic
P SP

convergence to x* is a,fP:aSP/(k+ASP)ﬂS and ¢ =c” /k* , where 4¢% - B,

LT =% >1, with {4%,6%1>0 and 0<g% <1 . This selection leads to a rate of

convergence that asymptotically approaches k"> when CRN are used (Kleinman et
al. 1999). The asymptotically optimal choice for g% is, thus, 1. For applications in which

efficiency using a small number of iterations is sought, the use of smaller values for ,BSP
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are suggested (Spall 2003). Regarding the rest of the parameters for the sequences
(" and {a}, A is typically set to 5-20% of the maximum number of iterations

selected for the algorithm, and the initial step ¢ is chosen “close” to the standard
deviation of the prediction error for the stochastic estimate in Eq. (2.4). The value of a

can be determined based on the estimate of the gradient in the first step g, and the

desired step size for the first iteration. Some initial trials are generally needed in order

to make a good selection for a*”, especially when little prior insight is available for the

sensitivity of the objective function to each of the design variables. Convergence of the
iterative process is based on the value ||Xk+l_xk|| of the last few steps for an

appropriate selected vector norm. Note that contrary to deterministic optimization
problems, convergence cannot be based on the objective function values in subsequent
iterations due to the estimation error that makes this comparison impractical; since
interior sampling is used, the random numbers used to obtain these two estimates are
not the same, creating a significant potential impact of the estimation error on the
intended comparison. As such, convergence needs to rely on comparisons of the design
vectors. Additional stopping criteria related to the computational effort can be set, such
as total allowed iterations of the algorithm or total allowed function calls to calculate
the model response. Blocking rules can also be applied in order to avoid potential
divergence of the algorithm, especially in the first iterations, and a proper normalization

of the design vector X is strongly suggested (Spall 2003).
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APPENDIX B:

DETERMINISTIC TOPOLOGY OPTIMIZATION

Topology optimization searches for the structural configuration (shape and
connectivity of the structure) contained within a given design domain X that for some
given boundary and loading conditions provides the most favorable response in terms of
some chosen performance measure (Bendsge and Sigmund 2003). A popular approach
to obtain the solution is to discretize the domain into finite elements, ¢, and select the

densities of each element as design variables x, €[0,1],e=1---,N, (typically

e

interpolated between two states: either 0 (void) or 1 (full material)), where N,

corresponds to the total number of elements. The performance objective is typically

taken as the minimization of the compliance c(x) for a given structural domain, subject
to a prescribed mass fraction constraint m, such thatm, <m,, where m, denotes the

domain’s mass fraction, which can be computed as

sziix . (B.1)

e
e e=l

For a linear elastic material, the compliance is a function of the global
displacement U (found through the finite element method) and the global stiffness

matrix K (Bendsge and Sigmund 2003). Here the problem is relaxed by employing the
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Solid Isotropic Material with Penalization (SIMP) formulation (Rietz 2001), leading to the

compliance function given by (Sigmund 2001)

e “oe’ e

Ne
c(x)=U"KU =) xulku, e=1..,N,, (B.2)

where p,isa penalization factor employed to avoid intermediate densities (i.e. to drive
each element toward a particular state — either void or full material), u, is the local
displacement vector for a given element, and £, is the element’s stiffness matrix which
in turn is a function of the poison ratio v and the modulus of elasticity £, of the

element.
The gradient of the compliance can be analytically obtained (Bendsge and
Sigmund 2003) as

oc(x)
ox.

e

—pp(xe)p”fluTku e=1,..,N, .

e oe’ e

(B.3)

The solution to a deterministic topology optimization problem analogous to the
problem examined in Chapter 5 is presented next, although it is not relevant to the
discussion in that chapter. That problem deals with the topology optimization of a
Michell-type structure where a rectangular design domain is subject to a central point
load at the bottom with one of the lower corners fixed and the other one simply
supported (Figure B.1 (a)). The solution to the problem is obtained with the Method of
Moving Asymptotes (MMA) (Svanberg 1987), which is a popular algorithm to solve

topology optimization problems, and the result is shown in B.1 (b). All the optimization
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parameters such as the discretization, penalization factor, and filter radius are the same

as in Chapter 5.

(a) Design domain and
boundary conditions

, Py

».

(b) Optimum deterministic
design

Figure B.1: Solution to the deterministic problem, a) design
domain, loads, and supports. b) Optimum design. Discretization,
penalization factor and filter size remain as in Chapter 5.
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